Skip to main content

Metagenomic Approaches in Understanding the Mechanism and Function of PGPRs: Perspectives for Sustainable Agriculture

  • Chapter
  • First Online:
Agriculturally Important Microbes for Sustainable Agriculture

Abstract

The rationale of this article especially emphasizes the potential contributions of metagenomics to the study of plant growth-promoting rhizobacteria (PGPRs) which play an important role in the sustainable agriculture. Several studies are currently focused to unravel the molecular mechanism implicated in plant–microbe interactions to comprehend the functionality of PGPRs. In this context, researchers are presently using advanced molecular techniques, modern sequencing technologies, and metagenomics, to explore the structural and functional aspects of genes that analyze the protein composition. Metagenomics has a huge prospective to endow with fundamental knowledge on plant–microbe interactions necessary for new innovations to increase sustainable agricultural productivity. This review summarizes the main features of PGPRs in sustainable agriculture and gives a brief outlook on the recent trends in plant–microbe metagenomics. It also critically discusses the current knowledge of plant–soil–microbe-mediated interactions and the impact of enhanced genomic technologies and our perception to understand how these relationships impact plant performance and sustainable improvement of plant productivity. Metagenomic applications in framework of plant–microbe interactions are also highlighted that profit from these novel technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant-microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Martínez V, Cotton J, Gardner T, Moore-Kucera J, Zak J, Wester D, Cox S (2014) Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl Soil Ecol 84:69–82

    Article  Google Scholar 

  • Ahemad M, Khan MS (2012) Evaluation of plant-growth-promoting activities of rhizobacterium, Pseudomonas putida under herbicide stress. Ann Microbiol 62:1531–1540

    Article  CAS  Google Scholar 

  • Ahemad M, Kibretm M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Altomare C, Tringovska I (2011) Beneficial soil microorganisms, an ecological alternative for soil fertility management. In: Lichtfouse E (ed) Genetics, biofuels and local farming system. Springer, Dordrecht, pp 161–214

    Chapter  Google Scholar 

  • Armada E, Portela G, Roldán A, Azcón R (2014) Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma 232:640–648

    Article  CAS  Google Scholar 

  • Atamna-Ismaeel N, Finkel O, Glaser F, Von Mering C, Vorholt JA, Koblizek M et al (2012a) Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environ Microbiol Rep 4:209–216

    Article  CAS  PubMed  Google Scholar 

  • Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF et al (2012b) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14:140–146

    Article  CAS  PubMed  Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. doi:10.1007/978-81-322-2776-2_18

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Bakker PAH, Corné M, Pieterse J, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Google Scholar 

  • Barh D, Zambare V, Azevedo V (2013) Omics. Applications in biomedical, agricultural, and environmental sciences. CRC Press, Boca Raton

    Book  Google Scholar 

  • Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47(7):729–743

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013) (a Marschner review). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Bengtsson-Palme JF, Boulund J, Fick E, Kristiansson DGJ, Larsson (2014) Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 5:1–14

    Article  Google Scholar 

  • Bhardwaj SC, Prashar M, Prasad P (2014) Ug99-future challenges. In: Future challenges in crop protection against fungal pathogens. Springer, New York, pp 231–247

    Google Scholar 

  • Bloem J, Benedetti A, Hopkins D (2006) Microbial methods assessing soil quality. CABI Publishing, CAB International, Wallingford. ISBN 0-85199-098-3

    Google Scholar 

  • Bressan M, Roncato MA, Bellvert F, Comte G, el Zahar Haichar F, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3(11):1243–1257

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Munch PC, Weiman A, Droge J, Pan Y, …, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392e403

    Google Scholar 

  • Calvo P, Nelson LM, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Carbonetto B, Rascovan N, Álvarez R, Mentaberry A, Vázquez MP (2014) Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in argentine pampas

    Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48(5):489–499

    Article  Google Scholar 

  • Cheng Z, McConkey BJ, Glick BR (2010) Proteomic studies of plant–bacterial interactions. Soil Biol Biochem 42(10):1673–1684

    Article  CAS  Google Scholar 

  • Chhabra S, Brazil D, Morrissey J, Burke JI, O’Gara FN, Dowling D (2013) Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiol Open 2(5):717–724

    CAS  Google Scholar 

  • Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33:1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470e478

    Article  CAS  Google Scholar 

  • Deusch S, Tilocca B, Camarinha-Silva A, Seifert J (2015) News in livestock research-use of omics-technologies to study the microbiota in the gastrointestinal tract of farm animals. Comput Struct Biotechnol J 13:55–63

    Article  CAS  PubMed  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H et al (2009) Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Mol Plant-Microbe Interact 22:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One 8:462–469

    Google Scholar 

  • East R (2013) Microbiome: Soil science comes to life. Nature 501(7468):S18–S19

    Article  CAS  PubMed  Google Scholar 

  • van Elsas JD, Jansson JK, Trevors JT (2007) Modern soil microbiology. CRC Press. Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Faure D, Vereecke D, Leveau JH (2009) Molecular communication in the rhizosphere. Plant Soil 321(1–2):279–303

    Article  CAS  Google Scholar 

  • Fernández-Arrojo L, Guazzaroni ME, López-Cortés N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21(6):725–733

    Article  PubMed  CAS  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6(5):1007e1017

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Fujita JM, Kimura N, Sakai A, Ichikawa Y, Hanyu T, Otsuka M (2011) Cloning and heterologous expression of the Vibrioferrin biosynthetic gene cluster from a marine metagenomic library. Biosci Biotechnol Biochem 75:2283–2287

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 395–412

    Chapter  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. doi:10.6064/2012/963401

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haney CH, Samuel BS, Bush J, Ausubel FM (2015) Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat Plant 1(6)

    Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hjort K, Bergström M, Adesina MF, Jansson JK, Smalla K, Sjöling S (2010) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71:197–207

    Article  CAS  PubMed  Google Scholar 

  • Hoff KJ, Tech M, Lingner T, Daniel R, Morgenstern B, Meinicke P (2008) Gene prediction in metagenomic fragments: a large scale machine learning approach. BMC Bioinform 9(1):1

    Article  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RK, Leung GCY, Hirkala DLM, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can J Microbial 54:248–258

    Article  CAS  Google Scholar 

  • Ikeda S, Ytow N, Ezura H, Minamisawa K, Miyashita K, Fujimura T (2007) Analysis of Molecular diversity of bacterial chitinase genes in the maize rhizosphere using culture independent methods. Microbes Environ 22:71–77

    Article  Google Scholar 

  • Iovene M, Barone A, Frusciante L, Monti L, Carputo D (2004) Selection for aneuploid potato hybrids combining a low wild genome content and resistance traits from Solanum commersonii. Theor Appl Genet 109(6):1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Jahanian A, Chaichi MR, Rezaei K, Rezayazdi K, Khavazi K (2012) The effect of plant growth promoting rhizobacteria (PGPR) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4:923–929

    Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24(3):285–291

    Article  Google Scholar 

  • Kaymak HC (2010) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 45–79

    Chapter  Google Scholar 

  • Kennedy J, Flemer B, Jackson SA, Lejon DP, Morrissey JP, O’Gara F, Dobson AD (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8(3):608–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegard B, Soderstrom H, Larsson DGJ (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 6:e17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017a) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Kumar A, Meena VS, Maurya BR, Raghuwanshi R, Bisht JK, Pattanayak A (2017b) Towards the biological nitrogen fixation and nitrogen management in legume under sustainable agriculture. Appl Soil Ecol. doi:10.1016/j.apsoil.2017.05.013

  • Li S et al (2014) Complete genome sequence of Paenibacillus polymyxa SQR-21, a plant growth-promoting rhizobacterium with antifungal activity and rhizosphere colonization ability. Genome Announc 2:e00281–e00214

    PubMed  PubMed Central  Google Scholar 

  • Liu WX et al (2013) Rhizobacteria (Pseudomonas sp. SB) assist phytoremediation of oily-sludge-contaminated soil by tall fescue (Testuca arundinacea L.) Plant Soil 371:533–542

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo YM, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. doi:10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. doi:10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8(8):1577e1587

    Article  CAS  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13(2):85–96

    CAS  Google Scholar 

  • Müller CA, Obermeier MM, Berg G (2016) Bioprospecting plant-associated microbiomes. J Biotechnol 235:171–180

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2(3):317–322

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Google Scholar 

  • Nikolic B, Schwab H, Sessitsch A (2011) Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum. L Arch Microbiol 193:665–676

    Article  CAS  PubMed  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun:5, 4950

    Google Scholar 

  • Öpik M, Moora M, Liira J, Kõljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160(3):581–593

    Article  Google Scholar 

  • Pan Y, Cassman N, de Hollander M, Mendes LW, Korevaar H, Geerts RH, van Veen JA, Kuramae EE (2014) Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol 90(1):195–205

    Article  CAS  PubMed  Google Scholar 

  • Pii Y, Borruso L, Brusetti L, Crecchio C, Cesco S, Mimmo T (2016) The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol Biochem 99:39–48

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, …, Mende DR (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. doi:10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.) World J Microbiol Biotechnol 25(1):47–55

    Article  Google Scholar 

  • Ramos Solano B, Maicas B, Gutiérrez Mañero J (2008) Physiological and molecular mechanisms of PGPRs. In: Ahamd I, Pichtel J, Hayat S (eds) En: plant-bacteria interactions. Strategies and techniques to promote plant growth. Wiley, New York, pp 41–54

    Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Ann Rev Microbiol 57(1):369–394

    Article  CAS  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Rincon-Florez VA, Carvalhais LC, Schenk PM (2013) Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5(3):581–612

    Article  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. doi:10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Sarkar D, Meena VS, Haldar A, Rakshit R (2017) Site-specific nutrient management (SSNM): a unique approach towards maintaining soil health. In: The adaptive soil management: from theory to practices, pp 69–88. doi:10.1007/978-981-10-3638-5_3

  • Schauss K, Focks A, Leininger S, Kotzerke A, Heuer H, Thiele-Bruhn S, ..., Munch JC (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11(2):446–456

    Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111(2):585–592

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, ..., Hurek T (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interactions 25(1):28–36

    Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016a) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. doi:10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Sharma M, Tarafdar A, Ghosh R (2016b) Use of genomic approaches in understanding the role of Actinomycetes as PGP in grain legumes. In: Plant growth promoting actinobacteria, Springer, Singapore, pp 249–262

    Google Scholar 

  • Shen J, Li C, Mi G, Li L, Yuan L, Jiang R et al (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. doi:10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85(2):265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. doi:10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229-4473.2015.00012.9

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. doi:10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Song JY et al (2012) Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. strain JS. J Bacteriol 194:3760–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen J, Nicolaisen MH, Ron E, Simonet P (2009) Molecular tools in rhizosphere microbiology from single-cell to whole-community analysis. Plant Soil 321:483e512

    Article  CAS  Google Scholar 

  • Souza RC, Hungria M, Cantão ME, Vasconcelos ATR, Nogueira MA, Vicente VA (2015) Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. Appl Soil Ecol 86:106–112

    Article  Google Scholar 

  • Stempfhuber B, Richter-Heitmann T, Regan KM, Kölbl A, Kaul P, Marhan S, Sikorski J, Overmann J, Friedrich MW, Kandeler E (2015) Spatial interaction of archaeal ammonia-oxidizers and nitrite-oxidizing bacteria in an unfertilized grassland soil. Front Microbiol 6:1567

    PubMed  Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics–the key to the uncultured microbes. Curr Opin Microbiol 7(5):492–498

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55(3):415–424

    Article  CAS  PubMed  Google Scholar 

  • Swarupa V, Pavitra K, Shivashankara KS, Ravishankar KV (2016) Omics-driven approaches in plant–microbe interaction. In Microbial inoculants in sustainable agricultural productivity, Springer, India, pp 61–84

    Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. doi:10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities a review. J Ind Microbiol 17:170e178

    Google Scholar 

  • Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T (2013) Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31(2):154–165

    Article  CAS  PubMed  Google Scholar 

  • Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ 28:120–127

    Article  PubMed  Google Scholar 

  • Van Emon JM (2015) The omics revolution in agricultural research. J Agric Food Chem 64(1):36–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Oosten VR, Bodenhausen N, Reymond P, Van Pelt JA, Van Loon LC, Dicke M, Pieterse CM (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant-Microbe Interact 21(7):919–930

    Article  PubMed  CAS  Google Scholar 

  • Vayssier-Taussat M, Albina E, Citti C, Cosson J-F, Jacques M-A, Lebrun M-H, Le Loir Y, Ogliastro M, Petit M-A, Roumagnac P (2014) Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Ind J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P (2017a) Microbial dynamics as influenced by bio-organics and mineral fertilizer in alluvium soil of Varanasi, India. Int J Curr Microbiol App Sci 6(2):1516–1524

    Article  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P, Jajoria M (2017b) Enhancing production potential of cabbage and improves soil fertility status of indo-Gangetic plain through application of bio-organics and mineral fertilizer. Int J Curr Microbiol App Sci 6(3):301–309

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • van der Vlugt R, Minafra A, Olmos A, Ravnikar M, Wetzel T, Varveri C, Massart S (2015) Application of next generation sequencing for study and diagnosis of plant viral diseases in agriculture

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95(12):6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson SA, Roberts SC (2014) Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr Opin Biotechnol 26:174–182

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74(11):5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. doi:10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. doi:10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Yergeau E, Sanschagrin S, Maynard C, St-Arnaud M, Greer CW (2014) Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J 8(2):344–358

    Article  CAS  PubMed  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. doi:10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zeyaullah M, Kamli MR, Islam B, Atif M, Benkhayal FA, Nehal M, ..., Ali A (2009) Metagenomics-An advanced approach for noncultivable micro-organisms. Biotechnol Mol Biol Rev 4(3):49–54

    Google Scholar 

  • Zhang Z, Ober U, Erbe M, Zhang H, Gao N, He J, Li J, Simianer H (2014) Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies. PLoS One 9(3):e93017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the kind support and encouragement extended by Krishna University, Machilipatnam, and Sambalpur University, Odisha.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Bramhachari or E. Kariali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bramhachari, P.V., Nagaraju, G.P., Kariali, E. (2017). Metagenomic Approaches in Understanding the Mechanism and Function of PGPRs: Perspectives for Sustainable Agriculture. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-10-5589-8_8

Download citation

Publish with us

Policies and ethics