Skip to main content

Bacterial-Mediated Selenium Biofortification of Triticum aestivum: Strategy for Improvement in Selenium Phytoremediation and Biofortification

  • Chapter
  • First Online:

Abstract

The increasing world population has forced the world to improve the productivity of crops. Among other important cereals, wheat is one such a crop which has increasing demands all over the world. It provides ~20% of caloric and protein needs worldwide. Although the use of modern technologies enhanced the production of wheat, it also resulted in decreased mineral content of crops, which include Ca, K, Na, Zn, Fe and Se. The selenium (Se) content in wheat is highly variable ranging from 5 to 720 μg Se/kg. Meanwhile the Se distribution is highly uneven worldwide, ranging from a low value of 0.01 mg Se/kg of soil to a higher value of 1200 mg Se/kg of soil in seleniferous soils. Wheat is among one of the major sources of Se supply for humans in areas where wheat is an important component of daily diet, so it must be maintained in healthy concentration to ensure adequate supply of Se to humans. The use of selenate and selenite with urea crystals and foliar application proved to enhance selenium content, but these measures have their own drawbacks. Bacterial inoculation to wheat resulted in remarkable increase in the accumulation of selenium in wheat plant along with Ni, Mn, P, Mo, K, Fe and Ca. Selenium-fortified wheat is a best option for the daily intake of selenium by humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrams M, Burau R, Zasoski R (1990) Organic selenium distribution in selected California soils. Soil Sci Soc Am J 54(4):979–982

    Article  CAS  Google Scholar 

  • Acuña JJ, Jorquera MA, Barra PJ, Crowley DE, Mora ML (2013) Selenobacteria selected from the rhizosphere as a potential tool for se biofortification of wheat crops. Biol Fert Soils 49(2):175–185

    Article  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 293–313. doi:10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Alloway BJ (2013) Introduction. Heavy metals in soils. Springer, Dordrecht, pp 3–9

    Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 225–266. doi:10.1007/978-81-322-2776-2_18

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Banerjee MR, Yesmin L (2009) Sulfur-oxidizing plant growth promoting rhizobacteria for enhanced canola performance, Google Patents number US7491535

    Google Scholar 

  • Barceloux DG, Barceloux D (1999) Selenium. J Toxicol Clin Toxicol 37(2):145–172

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18. Biol Fert Soil 50(6): 983–990

    Article  CAS  PubMed  Google Scholar 

  • Boldrin PF, de Figueiredo MA, Yang Y, Luo H, Giri S, Hart JJ, Faquin V, Guilherme LR, Thannhauser TW, Li L (2016) Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiol Plant 158:80–91

    Article  CAS  PubMed  Google Scholar 

  • Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta (BBA) Gen Subj 1830(5):3289–3303

    Article  Google Scholar 

  • Brown T, Shrift A (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev 57(1):59–84

    Article  CAS  Google Scholar 

  • Burnell JN (1981) Selenium metabolism in Neptunia amplexicaulis. Plant Physiol 67(2):316–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabaraux JF, Dotreppe O, Hornick JL, Istasse L, Dufrasne I (2007) Les oligo-éléments dans l'alimentation des ruminants: État des lieux, formes et efficacité des apports avec une attention particulière pour le sélénium. CRA-W-Fourrages Actualités, 12ème journée, 2007; 28–36.

    Google Scholar 

  • Cartes P, Gianfreda L, Mora M (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276(1–2):359–367

    Article  CAS  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 281–291. doi:10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • De Souza M, Huang C, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209(2):259–263

    Article  PubMed  Google Scholar 

  • Dixon J, Braun H, Crouch J (2009) Overview: transitioning wheat research to serve the future needs of the developing world. Wheat facts and Futures 2009. Mexico: CIMMYT 23 (4.3):1

    Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 77–98. doi:10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 267–280. doi:10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Du Q, Yao H, Yao L, Zhang Z, Lei X, Xu S (2016) Selenium deficiency influences the expression of selenoproteins and inflammatory cytokines in chicken aorta vessels. Biol Trace Elem Res:1–13

    Google Scholar 

  • Ducsay L, Lozek O (2006) Effect of selenium foliar application on its content in winter wheat grain. Plant Soil Environ 52(2):78

    CAS  Google Scholar 

  • Durán P, Acuña J, Jorquera M, Azcón R, Borie F, Cornejo P, Mora M (2013) Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: a preliminary study as a potential se biofortification strategy. J Cereal Sci 57(3):275–280

    Article  Google Scholar 

  • Durán P, Acuña JJ, Jorquera MA, Azcón R, Paredes C, Rengel Z, de la Luz MM (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol Fertil Soils 50(6):983–990

    Article  Google Scholar 

  • Ehlers RU (2006) Einsatz der Biotechnologie im biologischen Pflanzenschutz. Schriftenreihe der Deutschen Phytomedizinischen Gesellschaft eV8:17–31

    Google Scholar 

  • El Mehdawi A, Pilon-Smits E (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14(1):1–10

    Article  PubMed  Google Scholar 

  • Eswayah AS, Smith TJ, Gardiner PH (2016) Microbial transformations of selenium species of relevance to bioremediation. Appl Environ Microbiol 82(16):4848–4859. AEM. 00877-00816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eurola MH, Ekholm PI, Ylinen ME, Varo PT, Koivistoinen PE (1991) Selenium in Finnish foods after beginning the use of selenate-supplemented fertilisers. J Sci Food Agric 56(1):57–70

    Article  CAS  Google Scholar 

  • Fordyce FM (2013) Selenium deficiency and toxicity in the environment. Essentials of Medical Geology. Springer, pp 375–416

    Google Scholar 

  • Fordyce FM, Johnson CC, Navaratna UR, Appleton JD, Dissanayake CB (2000) Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Sci Total Environ 263(1):127–141

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zhang Z, Li Y, Shen P, Hu X, Cao Y, Zhang N (2016) Selenium deficiency facilitates inflammation following S. aureus infection by regulating TLR2-related pathways in the mouse mammary gland. Biol Trace Elem Res 172 (2):449–457

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Han J, Liang H, Yi J, Tan W, He S, Wu X, Shi X, Ma J, Guo X (2016) Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats. J Trace Elem Med Biol 34:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hira CK, Partal K, Dhillon K (2004) Dietary selenium intake by men and women in high and low selenium areas of Punjab. Public Hlth Nutri 7(01):39–43

    Google Scholar 

  • Jacobs LW (ed) (1989) Selenium in agriculture and the environment, Soil science Society of America special publication 23. SSSA, Madison

    Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 21–29. doi:10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pur Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 149–162. doi:10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Ker K, Seguin P, Driscoll BT, Fyles JW, Smith DL (2014) Evidence for enhanced N availability during switchgrass establishment and seeding year production following inoculation with rhizosphere endophytes. Arch Agron Soil Sci 60(11):1553–1563

    Article  CAS  Google Scholar 

  • Khalid S, Asghar HN, Akhtar MJ, Aslam A, Zahir ZA (2015) Biofortification of iron in chickpea by plant growth-promoting rhizobacteria. Pak J Bot 47:1191–1194

    CAS  Google Scholar 

  • Khoso PA, Pan T, Wan N, Yang Z, Liu C, Li S (2016) Selenium deficiency induces autophagy in immune organs of chickens. Biol Trace Elem Res:1–10

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pur Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 61–75. doi:10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum Aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Reg. doi:10.1007/s00344-016-9663-5

  • Leach A, Mumford J (2008) Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environ Pollut 151(1):139–147

    Article  CAS  PubMed  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178(1):92–102

    Article  CAS  PubMed  Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005a) Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil 269(1–2):369–380

    Article  CAS  Google Scholar 

  • Lyons GH, Judson GJ, Ortiz-Monasterio I, Genc Y, Stangoulis JC, Graham RD (2005b) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19(1):75–82

    Article  CAS  PubMed  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 137–147. doi:10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Mayland HF (1994) Selenium in plant and animal nutrition. In: Frankkenberger, WT BS (eds) selenium in the environment. Marcel-Dekker, New York, pp 29–47

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res. 45 (1,2 & 3): 6-12.

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J. Bot 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi:10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis Agric Biotechnol 4:806–811

    Article  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatalysis Agric Biotechnol 6:68–75

    Article  Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 1–20. doi:10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Neal RH (1995) Selenium. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic & Professional, London, pp 260–283

    Chapter  Google Scholar 

  • Nelson GC, Rosegrant MW, Palazzo A, Gray I, Ingersoll C, Robertson R, Tokgoz S, Zhu T, Sulser TB, Ringler C (2010) Food security, farming, and climate change to 2050: scenarios, results, policy options, vol 172. International Food Policy Research Institute, Washington, D C

    Google Scholar 

  • Oancea F, Szabolcs L, Oancea AO, Lacatusu R, Abraham B, Stanciu-Burileanu MM, Meszaros A, Lungu M (2014) Selenium biofortification biotechnologies of wheat grain in south-eastern part of Romania for a better human health. Studia Universitatis “Vasile Goldis” Arad Seria Stiintele Vietii (Life Sciences Series) 1:24–47

    Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Pieczyńska J, Grajeta H (2015) The role of selenium in human conception and pregnancy. J Trace Elem Med Biol 29:31–38

    Article  PubMed  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 43–59. doi:10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Ros G, Rotterdam A, Bussink D, Bindraban P (2016) Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil 404(1–2):99–112

    Google Scholar 

  • Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35(3):512–515

    Article  CAS  PubMed  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 127–136. doi:10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-Gangetic plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 203–219. doi:10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify SULTR1; 2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29(4):475–486

    Article  CAS  PubMed  Google Scholar 

  • Shiferaw B, Smale M, Braun HJ, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world10. Past successes and future challenges to the role played by wheat in global food security. Food Secure 5(3):291–317

    Article  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 221–234. doi:10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 171–185. doi:10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229–4473.2015.00012.9

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak a (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. doi:10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Sirko A, Hryniewicz M, Hulanicka D, Böck A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol 172(6):3351–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sors T, Ellis D, Na G, Lahner B, Lee S, Leustek T, Pickering I, Salt D (2005a) Role of sulfur assimilating enzymes in selenate reduction, tolerance and accumulation in Astragalus. Plant J 42:785–792

    Article  CAS  PubMed  Google Scholar 

  • Sors T, Ellis D, Salt D (2005b) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86(3):373–389

    Article  CAS  PubMed  Google Scholar 

  • Supriatin S, Weng L, Comans RN (2016) Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on Low-selenium arable land soils. Plant Soil 408 (1–2):73–94

    Google Scholar 

  • Suttle NF (2010) Mineral Nutrition of Livestock, 4th edn. MPG Books Group, London, p 565

    Book  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 315–325. doi:10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1998) Selenium metabolism in Escherichia coli. Biometals 11(3):223–227

    Article  CAS  PubMed  Google Scholar 

  • USGS (2011) 2010 minerals yearbook-selenium and tellurium. United States Geological Survey, Reston

    Google Scholar 

  • Van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119(3):243–254

    Article  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • White P, Bowen H, Parmaguru P, Fritz M, Spracklen W, Spiby R, Meacham M, Mead A, Harriman M, Trueman L (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55(404):1927–1937

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (1996) Trace elements in human nutrition and health. World Health Organization, Geneva

    Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 187–201. doi:10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yanai J, Mizuhara S, Yamada H (2015) Soluble selenium content of agricultural soils in Japan and its determining factors with reference to soil type, land use and region. Soil Sci Plant Nutr 61(2):312–318

    Article  CAS  Google Scholar 

  • Yasin M, Faisal M (2013) Growth responses of Triticum aestivum after inoculating with Pseudomonas and Stenotrophomonas. Afr J Microbiol Res 7(19):1952–1956

    Article  CAS  Google Scholar 

  • Yasin M, El-Mehdawi A, Anwar A, Pilon-Smits E, Faisal M (2015a) Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.)-applications in phytoremediation and biofortification. Int J Phytoremediation 17(4):341–347

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, El-Mehdawi AF, Pilon-Smits EA, Faisal M (2015b) Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytoremediation 17(8):777–786

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 163–170. doi:10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 31–42. doi:10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zhao J, Xing H, Liu C, Zhang Z, Xu S (2016) Effect of selenium deficiency on nitric oxide and heat shock proteins in chicken erythrocytes. Biol Trace Elem Res 171(1):208–213

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Higher Education Commission Pakistan and University of the Punjab, Lahore, Pakistan, for the support for the research work to our group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faisal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Abadin, Z.u., Yasin, M., Faisal, M. (2017). Bacterial-Mediated Selenium Biofortification of Triticum aestivum: Strategy for Improvement in Selenium Phytoremediation and Biofortification. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-10-5589-8_14

Download citation

Publish with us

Policies and ethics