Skip to main content

Entomopathogenic Bacteria and Biorationals in Chickpea Organic Crop Protection

  • Chapter
  • First Online:
Book cover Agriculturally Important Microbes for Sustainable Agriculture
  • 1438 Accesses

Abstract

Global food produce is contributed largely by agriculture and agro-based industries which is crucial for food security. But importance given to the organic crop protection for sustainable farming and land use is trivial across the countries. Recent upgradation in agro-farming systems by techno-crafts for higher yield and crop protection should also place microbes as an important entity in pest management. Development of new biocontrol agents from the microbial community is being reported which should gain lead in organic product development. Earlier microbial pesticide was found to be a slow action pest control or prevention tool in biological control approach. Many target-specific pest control agents like entomopathogenic bacteria and virus were found to be swift in action when compared with entomopathogenic fungi; henceforth, product developers and biocontrol specialists have reclaimed the hope on biological pest control because they could reduce pest population instantly and ecofriendly. In present articles focus on various examples, process and related information on entomopathogenic bacteria for development of biocontrol products against major chickpea crop pest Helicoverpa armigera. Special reference is given to chickpea crop since India is the largest producer of chickpea facing the highest crop loss due to pod borer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. doi:10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Al mazrawi MS (2007) Impact of the entomopathogenic fungus, Beauveria bassiana on the honeybees, Apis mellifera (Hymenoptera: Apidae). World J Agri Sci 3(1):7–11

    Google Scholar 

  • Andersen-Per Pinstrup, Marc J Cohen (2000) Modern biotechnology for food and agriculture: risks and opportunities for the poor, Agr. Biotechnol Poor 159–169

    Google Scholar 

  • Arti P, Sujoita P (2009) Evaluation of the morphological abnormalities in the 4th instar larva of Helicoverpa armigera (Hub.) on application of leaf extract of Lantana camara (L.) World J Zool 4(4):253–255

    Google Scholar 

  • Ayyathurai V, Duraisamy L, Ambalavanan S, Ramasamy S (2009) Plant growth promoting rhizobacteria of cotton affecting the developmental stages of Helicoverpa armigera. J Plant Protect Res 49:3

    Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. doi:10.1007/978-81-322-2776-2_18

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Barloy F, Lecadet MM, Delecluse A (1998) Distribution of clostridial cry-like genes among Bacillus thuringiensis and Clostridium strains. Curr Microbiol 36:232–237

    Article  CAS  PubMed  Google Scholar 

  • Beat R, Pechy-Tarr M, Ryffel F, Hoegger P, Obrist C, Rindlisbacher A, Keel C, Maurhofer M (2013) Oral insecticidal activity of plant-associated pseudomonads. Environ Microbiol 15:751–763

    Article  CAS  Google Scholar 

  • Behere GT, Tay WT, Russell DA, Kranthi KR, Batterham P (2013) Population genetic structure of the cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers. PLoS One 8:1

    Article  CAS  Google Scholar 

  • Bell E, Mullet JE (1993) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103:1133–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against fusarium wilt of tomato by combination of chitosan with an endophytic strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Biradar AP, Balikai RA, Teggelli RG (2001) Chemical control of pod borer, Helicoverpa armigera (Hübner) on pigeon pea. Karnataka J Agr Sci 14:500–502

    Google Scholar 

  • Birthal PS, Sharma OP (2004) Integrated pest management in Indian agriculture. Proceedings 11. National centre for agricultural economics and policy research. Library Avenue, New Delhi 110 012

    Google Scholar 

  • Boemare N, Tailliez P (2009) In: Stock SP et al (eds) Insect pathogens: molecular approaches and techniques. CAB International. Chapter 2, Wallingford, pp 31–45

    Google Scholar 

  • Bong CFJ, Sikorowski PP (1991) Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of corn earworm, Heliothis zea (Boddie). J Invertebr Pathol 57:406–412

    Article  Google Scholar 

  • Borlaug NE (2003) Feeding a world of 10 million people, The TVA/IFDC legacy, Third lecture published in Travis. P. Hignett memorial lecture series.

    Google Scholar 

  • Brachmann AO, Forst S, Furgani GM, Fodor A, Bode HB (2006) Xenofuranones A and B: phenylpyruvate dimmers from Xenorhabdus szentirmaii. J Nat Prod 69:1830–1832

    Article  CAS  PubMed  Google Scholar 

  • Carlson CR, Kolsto AB (1993) A complete physical map of a Bacillus thuringiensis chromosome. J Bacteriol 175:1053–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champlin FR, Grula EA (1979) Noninvolvement of beauvericin in the entomopathogenicity of Beauveria bassiana. Appl Environ Microbiol 37:1122–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clara M, Porcar M, Lopez A, Escudero IRD, Perez-Llarena FJ, Caballero P (2004) Characterization of a Bacillus thuringiensis strain with a broad spectrum of activity against lepidopteran insects. Entomol Exp Appl 111:71–77

    Article  Google Scholar 

  • Croft BA (1990) Arthropod biological control agents and pesticides. Wiley, New York. 723pp

    Google Scholar 

  • Daborn PJ, Waterfield N, Blight MA, Ffrench-Constant RH (2001) Measuring virulence factor expression by the pathogenic bacterium Photorhabdus luminescens in culture and during insect infection. J Bacteriol 183:5834–5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. doi:10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • David G (1997) Genetics of Heliothis and Helicoverpa resistance to chemical insecticides and to Bacillus thuringiensis. Pest Sci 51:251–258

    Article  Google Scholar 

  • Dhaliwal GS, Arora R (2010) Principles of insect pest management. National Agricultural Technology Information Centre, Ludhiana

    Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. doi:10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. doi:10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux- Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Medigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Duffy BK, Simon A, Weller DM (1996) Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology 86:188–194

    Article  Google Scholar 

  • Ebssa L (2005) Efficacy of entomopathogenic nematodes for the control of the western flower thrips Frankliniella occidentalis. Ph. D. Thesis, Hannover University: 141 pp

    Google Scholar 

  • Ehlers RU (1995) Introduction of non-endemic nematodes for biological control: Scientific and regulatory policy issues. COST & OECD workshop. Bruhnskoppel-Seminar hotel Malente, Germany. 17 p

    Google Scholar 

  • Eleftherianos I, Boundy S, Susan A J, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, ffrench-Constant RH, Reynolds S (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci 104(7):2419–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans HF (2000) Viruses. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer Academic Publishers, Dordrecht, pp 179–208

    Chapter  Google Scholar 

  • Fan X, Feg SL, Fu YQ, Wang HM (1999) Field studies on the occurrence and epidemiology of entomopathogenic diseases infecting Helicoverpa armigera in Hebei. Chinese J Biol Control 15:27–30

    CAS  Google Scholar 

  • FAO (2008) FAOSTAT, Food and Agriculture Organisation of United Nations, Rome (http://faostat3.fao.org/home/index.html#SEARCH_DATA)

  • FAO (2010) FAOSTAT, Food and Agriculture Organisation of United Nations, Rome (http://faostat3.fao.org/home/index.html#SEARCH_DATA)

  • Ffrench-Constant R, Waterfield N (2006) An ABC guide to the bacterial toxin complexes 183.ADV NU

    Google Scholar 

  • Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fodor A, Forst S, Haynes L, Hevesi M, Hogan J, Klein MG, Mathe-Fodor A, Stackebrndt, E., Szentirmai A, Sztaricskai F (2004) New perspectives of Xenorhabdus antibiotics research. In: Ehlers RU, Enkerli J, Glazer I, Lopez-Ferber M, Tkaczuk C (eds) IOBC/WPRS bulletin: insect pathogens insect parasitic nematodes. IOBC/WPRS; 2008, pp 157–164

    Google Scholar 

  • Forst S, Dowds B, Boemare NE, Stackebrandt E (1997) Xenorhabdus spp. and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  CAS  PubMed  Google Scholar 

  • Garczynski SF, Siegel JP (2007). In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 175–197. doi: 10.1007/978-1-4020-5933-9

  • Garica OA, Sarmiento M (2000) A note on the viability of Azospirillum brasilense in turf used as carrier in inoculated grass seeds. Cuba J Agric Sci 34:343–345

    Google Scholar 

  • Gayatri Priya N, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One 7(1)

    Google Scholar 

  • Ge F, Liu XH, Ding YQ, Wang XZ, Zhao YF (2003) Life-table of Helicoverpa armigera in Northern China and characters of population development in Southern and Northern China. Chin J Appl Ecol 14(2):241–245

    Google Scholar 

  • Goettel MS, Roberts DW (1992) Mass production, formulation and field application of entomopathogenic fungi. In: Lomer CJ, Prior C (eds) Biological control of locusts and grasshoppers. CAB International, Wallingford, pp 230–238

    Google Scholar 

  • Gopalakrishnan C, Narayanan K (1989) Occurrence of two entomofungal pathogen Metarhizium anisopliae (Metschnikoff) Sorokin var. minor Tulloch and Nomuraea rileyi in Heliothis armigera. Curr Sci 57:167–168

    Google Scholar 

  • Grimont PAD, Jackson TA, Ageron E, Noonan MJ (1988) Serratia entomophila sp. nov. associated with amber disease in the New Zealand grass grub Costelytra zealandica. Int J Syst Bacteriol 38:1–6

    Article  CAS  Google Scholar 

  • Gunning RV, Moores GD (2002) Chlorfenapyr resistance in Helicoverpa armigera in Australia. In: Pests and diseases 2002. Proceedings of the British Crop Protection Council Conference. British Crop Protection Council, United Kingdom. pp 793–798

    Google Scholar 

  • Guo H, Sun Y, Ren Q, Zhu-Salzman K, Kang L (2012) Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS One 7(7)

    Google Scholar 

  • Gurr G, Wratten SD (2000) Biological control: measures of success. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Gurr G, Wratten SD, Barbosa P (2000) Success in conservation biological control of arthropods. In: Gurr GW, Wratten SD (eds) Biological control: measures of success. Kluwer Academic, Dordrecht, pp 105–132

    Chapter  Google Scholar 

  • Hajek AE, Butler L (1999) Predicting the host range of entomopathogenic fungi. In: Follett PA, Duan JJ (eds) Nontarget effects of biological control. Kluwer Acad. Publ, Dordrecht, pp 263–276

    Google Scholar 

  • Hajek AE, Delalibera I (2010) Fungal pathogens as classical biological control agents against arthropods. BioControl 55:147–158

    Article  Google Scholar 

  • Hajek and Goettel (2007) Field manual of techniques in invertebrate pathology. In: Lacey LA and Kaya HK (eds), pp 815–833

    Google Scholar 

  • Hajek AE, McManus ML, Delalibera I (2007) A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol Control 41:1–13

    Article  Google Scholar 

  • Hall RW, Ehler LE, Bisabri-Ershadi B (1980) Rates of success in classical biological control of arthropods. Bull Entomol Soc Am 26:111–114

    Google Scholar 

  • Helge B, Bode (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230

    Article  CAS  Google Scholar 

  • Hokkanen HMT, Hajek AE (2003) Environmental impacts of microbial insecticides. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • INDIASTAT (2012) Indian statistical department data base. (http://www.indiastat.com/agriculture/2/agriculturalarealanduse/152/areaundercropsinindia19501951to20102011/448934/stats.aspx)

  • Isaka M, Tanticharoen M, Thentaranonth Y (2000) Cordyanhydrides A and B. Two unique anhydrides from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620. Tetrahedron Lett 41:1657–1660

    Article  CAS  Google Scholar 

  • Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V, Bhattacharyya A, Reznik G, Mikhailova N, Lapidus A, Chu MM, Goltsman E, Larsen N, D’Souza M, Walunas T, Grechkin Y, Pusch G, Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R, Kyrpides N (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. doi:10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • Jalali SK, Mohan K, Singh SP, Manjunath TM, Lalitha Y (2004) Baseline- of the old-world bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae susceptibility) populations from India to Bacillus thuringiensis Cry1Ac insecticidal protein. Crop Prot 23:53–59

    Article  CAS  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jayaraj J (1993) Biopesticides and integrated pest management for sustainable crop production. In: Roy NK (ed) Agrochemicals in sustainable agriculture. APC Publications, New Delhi

    Google Scholar 

  • Jayaraj S, Rangarajan AV, Gopalan M, Ramakrishnan C, Manoharan T, Thangaraju D (1990) Biology and bionomics of Heliothis armigera Hübner and pest surveillance -a retrospect. In: Jayaraj S, Uthamasamy S, Gopalan M, Rabindra RJ (eds) Heliothis management, Proc. Natl. workshop. Tamil Nadu Agri. Univ., Coimbatore, pp 36–44

    Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. doi:10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Ji D, Yi Y, Kang GH, Choi YH, Kim P, Baek NI, Kim Y (2004) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol Lett 239:241–248

    Article  CAS  PubMed  Google Scholar 

  • Khaderkhan H, Jayaraj S, Gopalan M (1993) Muscardine fungi for the biological control of agro forestry termite Odontotermes obesus (Rambur). Insect Sci Appl 14:529

    Google Scholar 

  • Kikuchi H, Miyagawa Y, Nakamura K, Sahashi Y, Inatomi S, Oshima Y (2004) A novel carbon skeletal trichothecene, tenuipesine A, isolated from an entomopathogenic fungus, Paecilomyces tenuipes. Org Lett 6:4531–4533

    Article  CAS  PubMed  Google Scholar 

  • Klein MG (1990) Efficacy against soil-inhabiting insect pests. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematode in biological control. CRC Press, Boca Raton, pp 195–214

    Google Scholar 

  • Klemm U, Schmutterer H (1993) Effects of neem preparations on Plutella xylostella L. and its natural enemies of the genus Trichogramma. Z Pflanzenkrankh Pflanzenschutz 100:113–128

    CAS  Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Kranthi KR, Kranthi NR (2004) Modeling adaptability of cotton boll worm Helicoverpa armigera (Hubner) to Bt cotton in India. Curr Sci 87:1096–1107

    Google Scholar 

  • Kranthi S, Kranthi KR, Bharose AA, Syed SN, Dhawad CS, Wadaskar RM, Behere GT, Patil EK (2006) Cytochrome oxidase I sequence of Helicoverpa species in India – its utility as a molecular tool. Indian J Biotechnol 5:195–199

    CAS  Google Scholar 

  • Krasnoff SB, Gupta S (1992) Efrapeptin production by Tolypocladium fungi (Deuteromycotina: Hyphomycetes). Intra– and inter–specific variation. J Chem Ecol 18:1721–1741

    Article  Google Scholar 

  • Krasnoff SB, Gibson DM, Belofsky GN, Gloer KB, Gloer JB (1996) New destruxins from the entomopathogenic fungus Aschersonia sp. J Nat Prod 59:485–489

    Article  CAS  Google Scholar 

  • Krishnamurthy Rao BH, Murthy, KSRK. (eds) (1983) Proceedings of national seminar on crop losses due to insect pests. Indian J Ent. (Special issue), vols I–II. Hyderabad

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. doi:10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Nat Acad Sci 108:15966–15971

    Google Scholar 

  • Lacey LA (ed) (1997) Manual of techniques in insect pathology. Academic, London

    Google Scholar 

  • Landers A (2007). Modern technology to improve spraying efficiency. Online:http://www.aben.cornell.edu/extension/pestapp/publications/mod.tech.html.22/10/2007.

  • Landis DA, Marino PC (1999) Landscape structure and extra-field processes: impact on management of pests and beneficials. In: Ruberson J (ed) Handbook of Pest management. Marcel Dekker, New York, pp 79–104

    Google Scholar 

  • Landsberg MJ, Sandra A, Rothnagel JR, Jason N, Busby Sean DG, Marshall Robert M, Simpsond Shaun Lottc J, Hankamera B, Hurst MRH (2011) 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci 108:20544–20549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF (2008) Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prod 71:1074–1077

    Article  CAS  PubMed  Google Scholar 

  • Laznik ZTT, Lakatos T, Trdan S (2008) Entomopathogenic nematode Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) recorded for the first time in Slovenia. Acta Agric Slov 91:37–45

    Google Scholar 

  • Legaspi JC, Legaspi BC, Saldana RR (2000) Evaluation of Steinernema riobravis (Nematoda: Steinernematidae) against the Mexican rice borer (Lepidoptera: Pyralidae). J Entomol Sci 35(2):141–149

    Article  Google Scholar 

  • Li J, Chen G, Webster JM, Czyzewska E (1995) Antimicrobial metabolites from a bacterial symbiont. J Nat Prod 58:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hu K, Webster JM (1998) Antibiotics from Xenorhabdus spp. and Photorhabdus spp. (Enterobacteriaceae). Chem Comp 34:1331–1339

    CAS  Google Scholar 

  • Lingappa S, Saxena Hem, Devi Vimala PS, Rai R Ahmad and Sanjeev Gupta eds. Indian Society of Pulses 2005. Role of biocontrol agents in management of Helicoverpa armigera (Hubner). In: Recent advances in Helicoverpa armigera management (Hem Saxena Research and development. IIPR, Kanpur, pp 159–184

    Google Scholar 

  • Luttrell RG, Fitt GP, Ramalho FS, Sugonyaev ES (1994) Cotton pest management: Part 1. A worldwide perspective. Annu Rev Entomol 39:517–526

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publ, Malden

    Google Scholar 

  • Malarvannan S (2004) Studies on biocontrol of Helicoverpa armigera using traditional plants. Ph. D Thesis. University of Madras, Chennai

    Google Scholar 

  • Malik MF, Ali L, Anwar S (2002) Determination of installation heights for codling moths synthetic pheromone traps in apple canopy. Asian J Plant Sci 1:226–227

    Article  Google Scholar 

  • Maria P-T, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD, Donahue MD, Grunder J, Loper JE, Keel C (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant- associated strains of Pseudomonas fluorescens. Environ Microbiol 10(9):2368–2386

    Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. doi:10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Matter MM, Marei SS, Moawad SM, El Gengaihi S (1993) The reaction of Aphis gossypii and its predator, Coccinella undecimpunctata to some plant extracts. Bull Fac Agric Univ Cairo 44:417–432

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • McInerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DR, Engelhardt LM, White AH (1991a) Biologically active metabolites from Xenorhabdus spp., part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54:774–784

    Article  CAS  PubMed  Google Scholar 

  • McInerney TWC, Lacey MJ, Akhurst RJ, Gregson RP (1991b) Biologically active metabolites from Xenorhabdus spp., part 2. Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod 54:785–795

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013a) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1, 2 & 3):6–12

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013b) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015a) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Botany 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015d) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi:10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016a) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. doi:10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016c) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016d) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016e) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811

    Google Scholar 

  • Mehta PK, Vaidya DN, Kashyap NP (2001) Management of tomato fruit borer, Helicoverpa armigera (Hubner) using insecticides and biopesticides. Himachal J Agric Res 26:50–53

    Google Scholar 

  • Mohammad M, Uma S (2008) Sub-lethal effects of SpltNPV infection on developmental of Spodoptera litura (Lepidoptera: Noctuidae), bio-control. Sci Technol 4:431–437

    Google Scholar 

  • Monobrullah M (2003) Optical brighteners – pathogenicity enhances of entomopathogenic viruses. Curr Sci 84:640–645

    CAS  Google Scholar 

  • Monobrullah MD, Nagata M (2000) Optimization of Spodoptera litura (Fab.) nucleo polyhedron virus production in homologous host larvae. Insect Sci Appl 20:157–165

    Google Scholar 

  • Morris ON (1980) Entomopathogenic viruses: strategies for use in forest insect pest management. Can Entomol 112(6):573–584

    Article  Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289

    Article  CAS  PubMed  Google Scholar 

  • Nakkeeran S, Kavitha K, Mathiyazhagan S, Fernando WGD, Chandrasekar G, Renukadevi P (2004) Induced systemic resistance and plant growth promotion by Pseudomonas chlororaphis strain PA-23 and Bacillus subtilis strain CBE4 against rhizome rot of turmeric (Curcuma longa L.) Can J Plant Pathol 26:417–418

    Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Sheela J, Raguchander T, Samiyappan R (2001) A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. BioControl 46:493–510

    Article  Google Scholar 

  • Naseri B, Fathipour Y, Moharramipour S, Hosseininaveh V (2009) Comparative life history and fecundity of Helicoverpa armigera (Lepidoptera: Noctuidae) on different soybean varieties. Entomol Sci 12(2):147–154

    Article  Google Scholar 

  • Neuenschwander P (2004) Harnessing nature in Africa. Nature 432:801–802

    Article  CAS  PubMed  Google Scholar 

  • Nguyen Q, Palfreyman RW, Chan LCL, Reid S, Nielsen LK (2012) Transcriptome sequencing of and microarray development for a Helicoverpa zea cell line to investigate in vitro insect cell-Baculovirus interactions. PLoS One 7(5)

    Google Scholar 

  • Nimbalkar RK, Shinde S, Tawar DS, Muley SP (2009) Response of cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) to different insecticides in Maharashtra, India, world. J Agric Sci 5(2):250–255

    CAS  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Patnaik HP, Lenka D (2000) Damage potential of Helicoverpa armigera in linseed (Linum usitatissimum). Indian J Agric Sci 70:197–198

    Google Scholar 

  • Pawar CS, Borikar PS (2005) Microbial options for management of Helicoverpa armigera (Hubner). pp 193–231

    Google Scholar 

  • Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21:519–538

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Prasad A, Wadhwani Y, Jain M, Vyas L (2007) Pathological alteration in the protein content of Helicoverpa armigera (Hubner) induced by Bacillus thuringiensis, npv and neem treatments. J Herb Med Toxicol 1(1):51–53

    Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Qingwen Z, Ping L, Gang W, Qingnian C (1998) On the biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting off young seedling at plumular axis. Acta Phytophyl Sin 25:209–212

    Google Scholar 

  • Quesada–Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452

    Article  PubMed  CAS  Google Scholar 

  • Rabindra RJ, Amerika Singh, Chandish R Balla, Hema Saxena (2005) Food legumes for nutritional security and sustainable agriculture. In: Kharkwal MC (ed) Proceedings of Fourth International Food Legumes Research Conference (IFLRC- IV)

    Google Scholar 

  • Radjacommare R, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bioformulation for the management of sheath blight and leaffolder in rice. Crop Prot 21:671–677

    Article  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. doi:10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Rao NV, Rao KT, Reddy AS (1991) Weed hosts of gram caterpillar, Helicoverpa armigera (Hub.) in Andhra Pradesh. J Insect Sci 4:174–175

    Google Scholar 

  • Ravensberg WJ (2011) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Progress in biological control, vol 10. Springer, pp 235–293

    Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Reddy AS (1988) Heliothis armigera (Hubner) – a serious threat to cotton cultivation in India, pp 113–131. National Workshop on Heliothis Management. Tamil Nadu Agriculture University, Coimbatore, India. pp 249–262

    Google Scholar 

  • Reddy MRS, Reddy GS (1999) An ecofriendly method to combat Helicoverpa armigera (Hub) on sweet orange (Citrus sinensis L.) Insect Environ 4:143–144

    Google Scholar 

  • Rejaul Hassan ASM, Karim B (2005) Pest management, productivity and environment: a comparative study of IPM and conventional farmers of Northern districts of Bangladesh. Pak J Soc Sci 3(8):1007–1014

    Google Scholar 

  • Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jorgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:77

    Article  Google Scholar 

  • Roberts DW (1981) Toxins of entomopathogenic fungi. In: Burges HD (ed) Microbial control of pests and plant disease 1970–1980. Academic, London, pp 441–463

    Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. doi:10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Saminathan VR, Mahadevan NR, Muthukrishnan N (2003) Population ecology of Helicoverpa armigera under different rainfed cotton cropping systems in southern districts of Tamil Nadu. Indian J Entomol 65:82–85

    Google Scholar 

  • Sanjay B, Kulkarni KA, Lingappa S (1991) Safety of Heliothis armigera (Hübner) NPV to some non-target beneficial organisms. Indian J Entomol 53:475–478

    Google Scholar 

  • Shah PA, Goettel MS (1999) Directory of microbial control products. Society for Invertebrate Pathology, Division of Microbial Control. http://www.sipweb.org/directory.htm.

  • Shanthakumar SP, Malarvannan S, Prabavathy VR, Sudha Nair (2009) Efficacy of green muscardine fungus, Metarhizium anisopliae (Metsch.) against red flour beetle, Tribolium castaneum (Herbst) (Tenebrionidae: Coleoptera). In: Booklet on the national symposium on non-chemical insect pest management. Elite publishing house. pp 105–11 2

    Google Scholar 

  • Shanthakumar SP, Manivannan S, Prabavathy VR (2010a) Intraspecific plasticity in egg parasitoid, Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae). Pest Manag Hortic Ecosyst 16(1):5–16

    Google Scholar 

  • Shanthakumar SP, Murali PD, Malarvannan S, Prabavathy VR, Naira S (2010b) Laboratory investigation of the potential of entomopathogenic fungi, Nomuraea rileyi against tobacco caterpillar, Spodoptera litura Fabricius and its safety to Trichogramma sp. J Biopest 3:132–137

    Google Scholar 

  • Sharma RP, Yadav RP (2001) Susceptibility status of Helicoverpa armigera Hüb. to some synthetic insecticides and neem seed kernel extract as influenced by host plant. Pestic Res J 13:152–159

    Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. doi:10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. doi:10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. doi:10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh SP (1994) Fifteen years of AICRP on biological control. Project directorate of biological control. Bangalore, New Delhi. 320 pp

    Google Scholar 

  • Singh R (1999) A serious outbreak of Helicoverpa armigera (Hübner) on strawberries in the foot-hills of Shivaliks. Insect Environ 5:41

    Google Scholar 

  • Singh OP (2005) Consumption pattern of insecticide in Helicoverpa armigera management in India. In: Recent advances in Helicoverpa armigera Management. Indian Society of Pulses Research and Development, Kanpur, pp 17–24

    Google Scholar 

  • Singh J, Banerjee N (2008) Transcriptional analysis and functional characterization of a gene pair encoding iron-regulated xenocin and immunity proteins of Xenorhabdus nematophila. J Bacteriol 190:3877–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Ballal CR, Poorani J (2002) Old world boll worm Helicoverpa armigera, associated Heliothinane and their natural enemies. Project Directorate of Biological Control, Bangalore, India, Technical Bulletin No. 31+135pp

    Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229-4473.2015.00012.9

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. Bisht JK, Meena VS, Mishra PK, Pattanayak A Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer Singapore, 113–134; 10.1007/978-981-10-2558-7_4.

    Chapter  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stock CA, Mcloughlin TJ, Klein JA, Adang M (1990) Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Can J Microbiol 36:879–884

    Article  CAS  Google Scholar 

  • Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species. Biocontrol Sci Tech 10:717–735

    Article  Google Scholar 

  • Subramaniam Gopalakrishnan GV, Rao R, Pagidi Humayun V, Rao R, Alekhya G, Jacob S, Deepthi K, Meesala Sree Vidya V, Srinivas LM, Rupela O (2011) Efficacy of botanical extracts and entomopathogens on control of Helicoverpa armigera and Spodoptera litura. Afr J Biotechnol 10(73):16667–16673

    Article  Google Scholar 

  • Subramanian S, Mohankumar S (2006) Genetic variability of the bollworm, Helicoverpa armigera, occurring on different host plants. spp. J Insect Sci 6:26

    Article  PubMed Central  Google Scholar 

  • Swaminathan MS (2010) From green to evergreen revolution. Indian Agriculture: performance and emerging challenges. Chapter 1, pp 28., Academic Foundation, New Delhi, pp 7

    Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. doi:10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Thlaer JO, Baghdiguian S, Boemare N (1995) Purification and characterization of Xenorhabdicin, a phage tail-like bacteriocin, from the lysogenic strain F1 of Xenorhabdus nematophilus. Appl Environ Microbiol 61:2049–2052

    Google Scholar 

  • Uma Devi K, Padmavathi J, Uma Maheswara Rao C, Khan AA, Mohan M (2008) A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). J Biocontrol Sci Tech 18(10):975–989

    Article  Google Scholar 

  • Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6:302–313

    Article  CAS  PubMed  Google Scholar 

  • Vasantharaj DB, Ramamurthy (2008) Biotechnological approaches in IPM and their impact on environment. J Biopest 1:01–05

    Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Vining LC, Kellerher WJ, Schwarting AE (1962) Oosporein production by a strain of Beauveria bassiana originally identified as Amanita muscaria. Can J Microbiol 8:931–933

    Article  CAS  Google Scholar 

  • Wagenar MM, Gibson DM, Clardy J (2002) Akanthomycin, a new antibiotic pyridone from the entomopathogenic fungus Akanthomyces gracilis. Org Lett 4:671–673

    Article  CAS  Google Scholar 

  • Woodring JL, Kaya HK (1988) Steinernematid and Heterorhabditid nematodes. A hand-book of techniques, Southern Cooperative Series Bulletin, vol 331. Arkansas Agricultural Experiment Station, Fayetteville. 30 p

    Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. doi:10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. doi:10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Yokoyama T, Tanaka M, Hasegawa M (2004) Novel cry gene from Paenibacillus lentimorbus strain Semadara inhibits ingestion and promotes insecticidal activity in Anomala cuprea larvae. J Invertebr Pathol 85:25–32

    Article  CAS  PubMed  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. doi:10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zehnder GW, Kloepper J, Yao C, Wei G (1997) Systemic resistance against beetles (Coleoptera: Chrysomelidae) by plant growth – promoting rhizobacteria. J Econ Entomol 90:91–39

    Article  Google Scholar 

  • Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU (1997) Cloning and analysis of the first cry gene from B. popilliae. J Bacteriol 179:4336–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou WW, Liang QM, Xu Y, Gurr GM, Bao YY, Geoff M, Bao GY-Y, Zhou X-P, Zhang C-X, Cheng J, Zhu Z-R (2013) Genomic insights into the glutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stal) and Sogatella furcifera (Horvath) (Hemiptera: Delphacidae). PLoS One 8:2

    Article  Google Scholar 

  • Zizka J, Weiser J (1993) Effect of beauvericin, a toxic metabolite of Beauveria bassiana, on the ultrastructure of Culex pipiens autogenicus larvae. Cytobios 75:13–19

    CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr. Vasantharaj David for helpful comments on an earlier finding. The author is also indebted to Prof. M. S. Swaminathan for the facilities provided to work on biological control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Shanthakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shanthakumar, S.P. (2017). Entomopathogenic Bacteria and Biorationals in Chickpea Organic Crop Protection. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-10-5589-8_11

Download citation

Publish with us

Policies and ethics