Skip to main content

Plant Beneficial Rhizospheric Microbes (PBRMs): Prospects for Increasing Productivity and Sustaining the Resilience of Soil Fertility

  • Chapter
  • First Online:
Book cover Agriculturally Important Microbes for Sustainable Agriculture

Abstract

The efficient microorganisms in the vicinity of plant roots that exert positive effects on plant growth are known as plant beneficial rhizospheric microbes (PBRMs). One of the salient features for the effectiveness of PBRMs is their ability to proliferate at hosts’ rhizosphere, rhizoplane or the root interior. They are directly or indirectly involved in plant growth promotion and development by releasing particular compounds, increasing the uptake of certain nutrients from the soil and lessening or preventing the plants from deleterious pathogens. Indirect plant growth promotion is achieved by the inhibition of the detrimental effects of phytopathogenic organisms, which can be obtained by the production of siderophores, i.e. metal-chelating agent. Several bacterial species also have been reported in biocontrol of soil-borne phytopathogens and the synthesis of antibiotics. Production of hydrogen cyanide (HCN) and/or fungal cell wall degrading enzymes (e.g. chitinase and β-1, 3-glucanase) help PBRMs to suppress the effect of phytopathogens. Direct plant growth promotion involves symbiotic and non-symbiotic PBRMs which function through production of plant hormones such as auxins, gibberellins, ethylene, cytokinins and abscisic acid. Some of the PBRMs are functioning as a sink for 1-aminocyclopropane-1-carboxylate (ACC), the immediate precursor of ethylene in higher plants, by hydrolyzing it into α-ketobutyrate and ammonia and in this way promoting root growth by lowering indigenous ethylene levels in the rhizospheric environment. PBRMs also help in solubilization of nutrient-bearing minerals (indigenous sources of phosphates, potash and other nutrients), enhance resistance to plant stress, stabilize soil aggregates and improve soil structure and organic matter content. PBRMs could able to retain more soil organic N and other nutrients in the plant-soil system, which can reduce the need for fertilizer N and P and help in nutrient acquisition. Evidently, PBRMs maintain enormous prospects in advanced and sustainable plant production, including, improved plant tolerance to stress, better uptake of plant nutrient from soils and reduced application of chemical inputs. Besides, PBRMs in the soil bear a peculiar relation to soil fertility. Various investigations have documented the increased health and productivity of different plant species by the application of plant beneficial rhizospheric microorganisms under both the normal and abiotic-stressed conditions. Attempts should be directed towards maximizing the identified benefits of PBRMs in all developing countries. If the benefits of PBRMs in crop production can be maximized, this will certainly help to fight against hunger. This chapter discusses the major functions of PBRMs in broad terms, but efforts were made to present specific usage of PBRMs to enhance plant nutrient uptake, for better plant response to environmental stress, and unexplored potentials in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye A, Torbert H, Kloepper JW (2009) Plant growth-promoting rhizo-bacteria allow reduced application rates of chemical fertilizers. Microbial Ecol 58:921–929

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann Microbiol 62:1531–1540

    Article  CAS  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 293–313. doi:10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Alves BJR, Boddey RM, Urquiaga S (2004) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    Article  Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32(9):1147–1160

    Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreno AM, Paz JA, García-Mina JM, Pozo MJ, Lopez-Raez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7:4250–4259

    Article  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 225–266. doi:10.1007/978-81-322-2776-2_18

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizingmicroorganisms (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317(1–2):235–255

    Article  CAS  Google Scholar 

  • Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A (2016) Co-inoculation of Dietzianatronolimnaea and Glomus intraradiences with vermicompost positively influences Ocimumbasilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 100:211–225

    Article  Google Scholar 

  • Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. W J Microbiol Biotech 28:1327–1350

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117

    Article  Google Scholar 

  • Cassán FD, Garcia de Salamone I (2008) Azospirillum sp.: Cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, 276 p

    Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1993) Stimulation de la croissance du maiset de la laitue romaine par desmicroor- ganismesdissolvant le phosphoreinorganique. Can J Microbiol 39:941–947

    Article  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (IRS). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Park M, MadhaiyanaM SS, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 3:1970–1974

    Article  CAS  Google Scholar 

  • Compant SW, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microb 71:4951–4959

    Article  CAS  Google Scholar 

  • Coyne MS (1999) Soil microbiology: an exploratory approach. Delmar publishers. pp 139–158; 279–289

    Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. doi:10.1023/A:1020809400075

    Article  CAS  Google Scholar 

  • Dardanelli MS, Carletti SM, Paulucci NS, Medeot DB, Rodriguez Caceres EA, Vita FA, Bueno M, Fumero MV, Garcia MB (2010) Benefits of plant growth-promoting rhizobacteria and rhizobia in agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, Microbiology monographs, vol 18. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 281–291. doi:10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • Desbrosses G, Kopka C, Ott T, Udvardi MK (2004) Lotus japonicusLjKUP is induced late during nodule development and encodes a potassium transporter of the plasma membrane. Mol Plant-Microbe Interact 17:789–797

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 5:687–1696

    Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 77–98. doi:10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 267–280. doi:10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC (2013) Stoichiometry constrains microbial response to root exudation- insights from a model and a field experiment in a temperate forest. Biogeosciences 10:821–838

    Article  CAS  Google Scholar 

  • Drogue B, Sanguin H, Borland S, Prigent-Combaret C, Wisniewski-Dyé F (2014) Genome wide profiling of Azospirillumlipoferum 4B gene expression during interaction with rice roots. FEMS Microbiol Ecol 87:543–555

    Article  CAS  PubMed  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Egamberdiyeva D, Islam KR (2008) Salt tolerant rhizobacteria: plant growth promoting traits and physiological characterization within ecologically stressed environment. In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH, Weinheim, pp 257–281

    Chapter  Google Scholar 

  • Farajzadeh D, Yakhchali B, Aliasgharzad N, Sokhandan-Bashir N, Farajzadeh M (2012) Plant growth promoting characterization of indigenous Azotobacteria isolated from soils in Iran. Curr Microbiol 64:397–403

    Article  CAS  PubMed  Google Scholar 

  • Glick B (2012) Plant growth-promoting bacteria: Mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderiavietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  PubMed  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haichar F, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J:1221–1230

    Google Scholar 

  • Harman WL, Gerik TJ, Williams JR (2004) CROPMAN: a crop production/environmental simulation tool to enhance agricultural sustainability. In: Dilawari VK, Brar LS, Jalota SK (eds) Proceedings of sustaining agriculture: problems and prospects. Punjab Agricultural University, Ludhiana., November 9–11, 2004, pp 22–30

    Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637

    Google Scholar 

  • Hodge A (2017) Accessibility of inorganic and organic nutrients for mycorrhizas. Mycorrhizal mediation of soil fertility, structure and carbon storage Chapter-8 pp. 129–148

    Google Scholar 

  • Hussain N, Mujeeb F, Tahir M, Khan GD, Hassan NM, Bari A (2002) Effectiveness of Rhizobium under salinity stress. Asian J Plant Sci 1:12–14

    Article  Google Scholar 

  • Hutchens SE, Valsami JE, Eldowney MS (2003) The role of heterotrophic bacteria in feldspar dissolution. Min Mag 67:1151–1170

    Article  CAS  Google Scholar 

  • Ikeda AG, Bassani LL, Adamoski D, Stringari D, Cordeiro VK, Glienke C, Maria Steffens BR, Hungria M, Galli-Terasawa LV (2013) Morphological and genetic character- ization of endophytic bacteria isolated from roots of differ- ent maize genotypes. MicrobEcol 65:154–160

    Google Scholar 

  • Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of -based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94(11):1272–1275

    Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 21–29. doi:10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 149–162. doi:10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Katznelson H, Lochhead AG, Timonin MI (1948) Soil microorganisms and the rhizosphere. Bot Rev 14:543–587

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2009) Role of phosphate- solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kim H, Park J, Choi SW, Choi KH, Lee G, Ban S, Lee C, Kim CS (2003) Isolation and characterization of Bacillus strains for biological control. J Microbiol 41(3):196–201

    CAS  Google Scholar 

  • Kim YC, Leveau J, Gardener BBM, PiersonEA PLS, Ryu CM (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation and regulation in higher plants. Annu Rev Plant Bio 63:11–152

    Article  CAS  Google Scholar 

  • Krewulak HD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804

    Article  CAS  PubMed  Google Scholar 

  • Kumar VK, Raju SK, Reddy MS, Kloepper JW, Lawrence KS, Groth DE, Miller ME, Sudini H, Binghai D (2009) Evaluation of commercially available PGPR for control of rice sheath blight caused by Rhizoctoniasolani. J Pure Appl Microbiol 3(2):485–488

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 61–75. doi:10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Lee YB, Naidu R (2016) Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: implications to bioremediation. J Hazard Mater 317:169–179

    Google Scholar 

  • Kuzyakov Y (2002) Factors affecting rhizosphere priming effects (review). J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Lehmann A, Leifheit EF, Rilling MC (2017) Mycorrhiza and soil aggregation. Mycorrhizal mediation of soil fertility, structure and carbon storage Chapter-14 pp. 241–262

    Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geophys J R Astron Soc 29:413–421

    CAS  Google Scholar 

  • Long SR (2001) Genes and signals in the Rhizobium-Legume symbiosis. Plant Physiol 125(1):69–72

    Google Scholar 

  • Loper J (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas flurorescens strain. Phytopathology 78:166–172

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Kamilova FD (2004) Rhizosphere management: microbial manipulation for biocontrol. In: Goodman RM (ed) Encyclopedia of plant and crop science. Dekker, New York, pp 1098–1101

    Chapter  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg CV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S, Tewari S, Arora NK (2012) Integrated approach for disease management and growth enhancement of Sesamumindicum L. utilizing Azotobacterchroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28(10):3015–3024

    Article  CAS  PubMed  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher-plants in mobilization and uptake of iron. J Plant Nutri 9:695–713

    Article  CAS  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobiumjaponicum enhances soybean nodulation. Microbiol Res 169:609–6015

    Article  CAS  PubMed  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 137–147. doi:10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi:10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and Agricultural. Biotechnology 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 1–20. doi:10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Montano FP, Villegas CA, Bellogin RA, del Cerro P, Espuny MR, Guerrero IJ, FJL B, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  Google Scholar 

  • Morgan JA, Lecain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y et al (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205. doi:10.1038/nature10274

    Article  CAS  PubMed  Google Scholar 

  • Morris SJ, Blackwood CB (2015) The ecology of soil biota and their function. Soil Microbiology, Ecology and Biodiversity (Fourth Edition) Chapter-10 pp. 273–309

    Google Scholar 

  • Nishanth D, Biswas DR (2008) Kinetics of phosphorus and potassium release from rockphosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticumaestivum). Bioresour Technol 99:3342–3354

    Article  CAS  PubMed  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 43–59. doi:10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Rajkumar M, Vara Prasad MN, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bac- teria for phytoremediation of trace metals. Crit Rev Biotechnol 29(2):120–130

    Article  CAS  PubMed  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Reichard PU, Kraemer SM, Frazier SW, Kretzchmark R (2005) goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and synergistic effect of oxalate. Plant Soil 276:115–132

    Article  CAS  Google Scholar 

  • Reitemeir RF (1951) Soil potassium. In: American Society ofAgronomy, Norman AG (eds) Advances in agronomy, vol 3. Academic Press, Int. Publ, New York, pp 113–164

    Google Scholar 

  • Richardson AE, Simpson RJ (2011a) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156(3):989–996

    Google Scholar 

  • Ruiz-Sanchez M, Aroca R, Munoz Y, Polon R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7(7):514–525

    Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. doi:10.1007/978-81-322-2776-2_9

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizingbacteria (KSB) from Indo-Gangetic plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Saiyad SA, Jhala YK, Vyas RV (2015) Comparative effi- ciency of five potash and phosphate solubilizing bac- teria and their key enzymes useful for enhancing and improvement of soil fertility. Int J Sci Res Pub 5:1–6

    Google Scholar 

  • Salisbury FB (1996) Units, symbols, and terminology for plant physiology: a reference for presentation of research resulted in the plant sciences. Oxford University Press, US, p 118

    Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie van Leeuwenhoek 94(1):11–19

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Spring 2:1–14

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 203–219. doi:10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Shridhar BS (2012) R Nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52

    Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 221–234. doi:10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 171–185. doi:10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunitiesand limitations. Trends Microbiol 12:386–393. PMID:15276615; http://dx.doi. org/10.1016/j.tim.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229-4473.2015.00012.9

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. doi:10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Sommers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with the grasses: genetic, biochemical and ecological aspect. FEMS Microbiol Rev 24(4):487–506

    Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutri 7:469–477

    Article  CAS  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 315–325. doi:10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticumaestivum) from the northern hills zone of India. Ann Microbiol. doi:10.1007/s13213-014-1027-4

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015b) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015c) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • van der Wal A, de Boer W (2017) Dinner in the dark: illuminating drivers of soil organic matter decomposition. Soil Biol Biochem 105:45–48

    Google Scholar 

  • Vleesschauwer D (2007) Using Serratia plymuthica to control fungal pathogens of plants. CAB Reviews 2(046)

    Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res J 1:35–38

    Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wiren N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess and enhanced chelate stability and affinity for iron(III). Plant Physiol 124:1149–1157

    Article  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 187–201. doi:10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 163–170. doi:10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 31–42. doi:10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisumsativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239

    Article  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizo- spheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang FS, Römheld V, Marschner H (1991) Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat. Soil Science Plant Nutri 37(4):671–678

    Article  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International33 (3):406–413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sarkar, A., Saha, M., Meena, V.S. (2017). Plant Beneficial Rhizospheric Microbes (PBRMs): Prospects for Increasing Productivity and Sustaining the Resilience of Soil Fertility. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-10-5589-8_1

Download citation

Publish with us

Policies and ethics