Skip to main content

Online Modeling Approach for Time-Varying Forging Processes

  • Chapter
  • First Online:
Modeling, Analysis and Control of Hydraulic Actuator for Forging
  • 583 Accesses

Abstract

The previous two chapters mainly discussed about off-line modeling as forging processes are time-invariant. In this chapter, a simple and effective online modeling approach is presented to model time-varying forging processes. This proposed method first constructs a model set for the time-varying forging process. All parameters in the model set are then identified online by using process data. An error minimization based match method is further developed to select a suitable model from the model set to reflect the present dynamic behavior of the forging process. Numerical cases and practical forging cases finally demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X.J. Lu, M.H. Huang, System decomposition based multi-level control for hydraulic press machine. IEEE Trans. Industr. Electron. 59(4), 1980–1987 (2012)

    Article  Google Scholar 

  2. S.J. Cho, J.C. Lee, Y.H. Jeon, J.W. Jeon, The Development of a Position Conversion Controller for Hydraulic Press Systems. International Conference on Robotics and Biomimetics (2009), pp. 2019–2022

    Google Scholar 

  3. G. Shen, D. Furrer, Manufacturing of aerospace forgings. J. Mater. Process. Technol. 98(2), 189–195 (2000)

    Article  Google Scholar 

  4. C.R. Boer, N. Rebelo, H. Rydstad, G. Schroder, Process modeling of metal forming and thermomechanical treatment. Springer-Verlag 175(2), 261–273 (1986)

    Google Scholar 

  5. C.J. Lin, H.T. Yau, Y.C. Tian, Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage. IEEE/ASME Trans. Mechatron. 18(4), 1385–1396 (2013)

    Article  Google Scholar 

  6. T.H. Lee, K.K. Tan, S. Huang, Adaptive friction compensation with a dynamical friction model. IEEE/ASME Trans. Mechatron. 16(1), 133–140 (2011)

    Article  Google Scholar 

  7. J. Beddoes, M.J. Bibbly, Principles of metal manufacturing process (Elsevier Butterworth-Heinemann, Burlington, 2014)

    Google Scholar 

  8. X.J. Lu, Y.B. Li, M.H. Huang, Operation-region-decomposition-based singular value decomposition/neural network modeling method for complex hydraulic press machines. Ind. Eng. Chem. Res. 52(48), 17221–17228 (2013)

    Article  Google Scholar 

  9. X.L. Huang, Microstructure evolution simulation and experimental study of 7A85 aluminum aviation joint forging by isothermal forging process, Master thesis, Central South University, Changsha, 2013

    Google Scholar 

  10. C.B. Yang, C.S. Deng, H.L. Chiang, Combining the Taguchi method with artificial neural network to construct a prediction model of a CO2 laser cutting experiment. Int. J Adv. Manuf. Technol. 59(9-12), 1103–1111 (2012)

    Article  Google Scholar 

  11. Y. Zhang, J. Yang, H. Jiang, Machine tool thermal error modeling and prediction by grey neural network. Int. J. Adv. Manuf. Technol. 59(9–12), 1065–1072 (2012)

    Article  Google Scholar 

  12. Z.J. Jiang, Y. Yang, S.Y. Mo, K. Yao, F.R. Gao, Polymer extrusion: from control system design to product quality. Ind. Eng. Chem. Res. 51(45), 14759–14770 (2012)

    Article  Google Scholar 

  13. H.X. Li, H. Deng, An approximate internal model based neural control for unknown nonlinear discrete processes. IEEE Trans. Neural Networks 17(3), 659–670 (2006)

    Article  Google Scholar 

  14. H. Deng, H.X. Li, A novel neural approximate inverse control for unknown nonlinear discrete dynamic systems. IEEE Trans. Syst. Man Cybern. Part B 35(1), 115–123 (2005)

    Article  Google Scholar 

  15. C.H. Lu, C.C. Tsai, Generalized predictive control using recurrent fuzzy neural networks for industrial processes. J. Process Control 17(1), 83–92 (2007)

    Article  Google Scholar 

  16. Z.G. Su, P.H. Wang, J. Shen, Y.F. Zhang, L. Chen, Convenient T-S fuzzy model with enhanced performance using a novel swarm intelligent fuzzy clustering technique. J. Process Control 22(1), 108–124 (2012)

    Article  Google Scholar 

  17. H.N. Wu, H.X. Li, H∞ Fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints. IEEE Trans. Fuzzy Syst. 16(2), 502–516 (2008)

    Article  MathSciNet  Google Scholar 

  18. P.F. van Lith, B.H.L. Betlem, B. Roffel, A structured modeling approach for dynamic hybrid fuzzy-first principles models. J. Process Control 12(5), 605–615 (2002)

    Article  MATH  Google Scholar 

  19. K. Tanaka, H.O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley 39(11), 2011–2013 (2002)

    Google Scholar 

  20. T. Soderstrom, P. Stoica, System Identification (Prentice Hall International, 1989)

    Google Scholar 

  21. P.V. Overschee, B.D. Moor, Subspace identification for linear systems: theory, implementation, applications (Kluwer Academic Publishers, Boston, 1996)

    Book  MATH  Google Scholar 

  22. A. Jeang, Robust tolerance design by response surface methodology. Int. J. Adv. Manuf. Technol. 15(6), 399–403 (1999)

    Article  MATH  Google Scholar 

  23. Y.X. Zhao, X.D. Chen, Model-based robust design for time–pressure fluid dispensing using surrogate modeling. Int. J. Adv. Manuf. Technol. 55(5–8), 433–446 (2011)

    Article  Google Scholar 

  24. X.J. Lu, H.X. Li, Perturbation theory based robust design for model uncertainty. ASME Trans. J. Mech. Des. 131(11), 111006 (2009)

    Article  Google Scholar 

  25. G.F. Liao, Simulation and experimental study of aviation joint forging by isothermal forging process, Master thesis, Central South University, 2011

    Google Scholar 

  26. M. Chen, M.H. Huang, Y.C. Zhou, L.H. Zhan, Synchronism control system of heavy hydraulic press. IEEE Int. Conf. Measur. Technol. Mechatron. Autom. 2, 17–19 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). Online Modeling Approach for Time-Varying Forging Processes. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics