Skip to main content

Forging Process Modeling via Multi-experiment Data

  • Chapter
  • First Online:
Modeling, Analysis and Control of Hydraulic Actuator for Forging
  • 588 Accesses

Abstract

As forging processes require to working across a large operation region, input/output samples do not easily satisfy the requirement of data-driven modeling because of many practical constraints involved. This renders forging processes difficult to model accurately. In this chapter, an operation-region-decomposition-based SVD/NN modeling method is presented for modeling of this type of processes. Because the complexity of the system at the local region is much lower than the original system throughout the operation region, the required input signal for modeling at a local region is easier to obtain than the one suitable for the whole region. An SVD/NN modeling method is then proposed to produce a low-order global model from these experiments at all local operation regions. The practical forging experiment finally demonstrates the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.J. Cho, J.C. Lee, Y.H. Jeon, J.W. Jeon, The Development of a Position Conversion Controller for Hydraulic Press Systems. International Conference on Robotics and Biomimetics (2009), pp. 2019–2022

    Google Scholar 

  2. M. Chen, M.H. Huang, Y.C. Zhou, L.H. Zhan, Synchronism control system of heavy hydraulic press. IEEE Int. Conf. Measur. Technol. Mechatron. Automat. 2, 17–19 (2009)

    Google Scholar 

  3. X.J. Lu, M.H. Huang, System decomposition based multi-level control for hydraulic press machine. IEEE Trans. Industr. Electron. 59(4), 1980–1987 (2012)

    Article  Google Scholar 

  4. P.H. Zhu, L. Zhang, R. Zhou, L. Chen, B. Yu, Q. Xie, A novel sensitivity analysis method in structural performance of hydraulic press. Math. Prob. Eng. 2012(2–4), 1101–1114 (2012)

    MATH  Google Scholar 

  5. Q. Liu, X. Bian, Multi-objective optimization of the hydraulic press crossbeam based on neural network and pareto GA. Int. Conf. Adv. Comp. Control (ICACC) 1(8), 52–55 (2010)

    Google Scholar 

  6. T. Soderstrom, P. Stoica, System Identification (Prentice Hall International, 1989)

    Google Scholar 

  7. P.V. Overschee, B.D. Moon, Subspace Identification for Linear Systems: Theory, Implementation, Applications (Kluwer Academic Publishers, Boston, 1996), pp. 57–93

    Google Scholar 

  8. S.L. Dai, C. Wang, F. Luo, Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Industr. Inf. 8(4), 801–810 (2012)

    Article  Google Scholar 

  9. S.H. Jeon, K.K. Oh, J.Y. Choi, Flux observer with online tuning of stator and rotor resistances for induction motors. IEEE Trans. Industr. Electron. 49(3), 653–664 (2002)

    Article  Google Scholar 

  10. R. Lozano, X.H. Zhao, Adaptive pole placement without excitation probing signals. IEEE Trans. Autom. Control 39(1), 47–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Marafioti, R. Bitmead, M. Hovd, Persistently exciting model predictive control using fir models. Int. J. Adapt. Control Sig. Process. 45(6), 536–552 (2010)

    Google Scholar 

  12. X.J. Lu, H.X. Li, Sub-domain intelligent modeling based on neural networks. IEEE International Joint Conference on Neural Networks (2008), pp. 445–449

    Google Scholar 

  13. C.K. Qi, H.X. Li, S.Y. Li, X.C. Zhao, F. Gao, Kernel-based spatiotemporal multimodeling for nonlinear distributed parameter industrial processes. Ind. Eng. Chem. Res. 51(40), 13205–13218 (2012)

    Article  Google Scholar 

  14. C.K. Qi, H.X. Li, S.Y. Li, X.C. Zhao, F. Gao, Probabilistic PCA-based spatiotemporal multimodeling for nonlinear distributed parameter processes. Ind. Eng. Chem. Res. 51(19), 6811–6822 (2012)

    Article  Google Scholar 

  15. D. Zheng, K.A. Hoo, M.J., Piovoso, Low-order model identification of distributed parameter systems by a combination of singular value decomposition and the Karhunen-Loève expansion. Ind. Eng. Chem. Res. 41(6), 1545–1556 (2002)

    Google Scholar 

  16. H.X. Li, C.K. Qi, Modeling of distributed parameter systems for applications-a synthesized review from time-space separation. J. Process Control 20(8), 891–901 (2010)

    Article  Google Scholar 

  17. T.S. Seecharan, Probabilistic Robust Design for Dynamic Systems Using Metamodeling, Master thesis, University of Waterloo, 2007

    Google Scholar 

  18. D. Wehrwein, Z.P. Mourelatos, Reliability-based design optimization of vehicle drivetrain dynamic performance. Int. J. Prod. Dev. 5(1-2), 54–75 (2008)

    Article  Google Scholar 

  19. D. Wehrwein, Z.P. Mourelatos, Optimization of engine torque management under uncertainty for vehicle driveline clunk using time-dependent metamodels. J. Mech. Des. 131(5), 861–872 (2009)

    Article  Google Scholar 

  20. D.P. Berrar, W. Dubitzky, M. Granzow, A practical approach to microarray data analysis. Kluwer Academic Publishers 2(1), 82–84 (2003)

    Google Scholar 

  21. J.H. Zhou, C.K. Pang, F.L. Lewis, Z.W. Zhong, Intelligent DIAGNOSIS AND PROGNOSIS OF TOOL WEAR USING DOMINANT FEATURE IDENTIfiCATION. IEEE Trans. Industr. Inf. 5(4), 454–464 (2009)

    Article  Google Scholar 

  22. D. Mathieu, Power law expressions for predicting lower and upper flammability limit temperatures. Ind. Eng. Chem. Res. 52(26), 9317–9322 (2013)

    Article  Google Scholar 

  23. Z.Q. Ge, Z.H. Song, F.R. Gao, Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 52(10), 3543–3562 (2013)

    Article  Google Scholar 

  24. Z.J. Jiang, Y. Yang, S.Y. Mo, K. Yao, F.R. Gao, Polymer extrusion: from control system design to product quality. Ind. Eng. Chem. Res. 51(45), 14759–14770 (2012)

    Article  Google Scholar 

  25. M.H. Huang, Y.B. Li, M. Zhang, J.W. Yang, Dynamic performance analysis for die-forging press machine under extremely low speed. J. Central South Univ. 43(11), 1672–7207 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). Forging Process Modeling via Multi-experiment Data. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics