Skip to main content

System-Decomposition Based Multi-level Control Approach

  • Chapter
  • First Online:
Modeling, Analysis and Control of Hydraulic Actuator for Forging

Abstract

A system-decomposition based multi-level control method is developed for complex forging processes with uncertainty in this chapter. The key idea in this proposed method is to decompose the system complexity into a group of simple sub-systems and the control task is shared by a group of simple sub-controllers. Under this framework, a sequence control strategy is developed to help these sub-controllers to handle the coupling between sub-systems, which can ensure the desirable global control performance for the complex forging process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.W. Liu, S.J. Liu, M.H. Huang, Y.C. Zhou, Y.J. Deng, Optimization of the giant hydraulic press’s synchronism-balancing control system. Int. Conf. Measuring Technol. Mechatron. Autom. 1(1), 828–831 (2009)

    Google Scholar 

  2. S.J. Cho, J.C. Lee, Y.H. Jeon, J.W. Jeon, in The Development of a Position Conversion Controller for Hydraulic Press Systems. International Conference on Robotics and Biomimetics, pp. 2019–2022, (2009)

    Google Scholar 

  3. M. Chen, M.H. Huang, Y.C. Zhou, L.H. Zhan, Synchronism control system of heavy hydraulic press. Int. Conf. Measuring Technol. Mechatron. Autom. 2, 17–19 (2009)

    Google Scholar 

  4. Y.C. Zhou, M.H. Huang, Z.W. Liu, Y. Deng, On hydraulic position holding system of huge water press based on iterative learning control combined with proportional-differential (PD) control. J. Inf. Comput. Sci. 5(5), 2309–2315 (2009)

    Google Scholar 

  5. S.R. Pandian, F. Takemura, Y. Hayakawa, S. Kawamura, Pressure observer-controller design for pneumatic cylinder actuators. IEEE/ASME Trans. Mechatron. 7(4), 490–499 (2002)

    Article  Google Scholar 

  6. C. Lascu, I. Boldea, F. Blaabjerg, Direct torque control of sensorless induction motor drivers: a sliding-model approach. IEEE Trans. Ind. Appl. 40(2), 582–590 (2004)

    Article  Google Scholar 

  7. Z. Jamaludin, H.V. Brussel, J. Swevers, Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer. IEEE Trans. Ind. Electron. 56(10), 3848–3853 (2009)

    Article  MATH  Google Scholar 

  8. K.K. Tan, S.Y. Lim, S. Huang, H.F. Dou, T.S. Giam, Coordinated motion control of moving gantry stages for precision applications based on an observer-augmented composite controller. IEEE Trans. Control Syst. Technol. 12(6), 984–991 (2004)

    Article  Google Scholar 

  9. D. Xu, D.B. Zhao, J.Q. Yi, X.M. Tan, Trajectory tracking control of omnidirectional wheeled modile manipulators: robust neural network-based sliding model application. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(3), 788–799 (2009). A Publication of the IEEE Systems Man & Cybernetics Society

    Article  Google Scholar 

  10. T. Takagi, M. Sugeno, in Fuzzy Identification of Systems and Its Applications to Modeling and Control. Readings in Fuzzy Sets for Intelligent Systems, vol 15, no 1 (1985), pp. 116–132

    Google Scholar 

  11. K. Tanaka, H.O. Wang, in Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach,. vol 39, no 11 ( John Wiley & Sons, Inc., 2002), pp. 2011–2013

    Google Scholar 

  12. H.N. Wu, H.X. Li, \( H\infty \) Fuzzy Observer-Based Control for a Class of Nonlinear Distributed Parameter Systems With Control Constraints. IEEE Trans. Fuzzy Syst. 16(2), 502–516 (2008)

    Google Scholar 

  13. X.J. Lu, H.X. Li, J.A. Duan, D. Sun, Integrated design and control under uncertainty: a fuzzy modeling approach. Ind. Eng. Chem. Res. 49(3), 1312–1324 (2010)

    Article  Google Scholar 

  14. C. Ocampo-Martinez, V. Puig, Piece-wise linear functions-based model predictive control of large-scale sewage systems. Control Theory Appl. 4(9), 1581–1593 (2001)

    Article  Google Scholar 

  15. S. Cincotti, Dynamic properties of a piece-wise linear circuit model of hysteresis. IEEE Trans. Magn. 37(5), 3320–3323 (2001)

    Article  Google Scholar 

  16. X.J. Lu, H.X. Li, in Sub-Domain Intelligent Modeling Based on Neural Networks. IEEE World Congress on Computational Intelligence, pp. 445–449, (2008)

    Google Scholar 

  17. J. Ru, X.R. Li, Variable-structure multiple-model approach to fault detection, identification, and estimation. IEEE Trans. Control Syst. Technol. 16(5), 1029–1038 (2008)

    Article  Google Scholar 

  18. Y. Pan, U. Ozguner, O.H. Dagci, Variable-structure control of electronic throttle valve. IEEE Trans. Ind. Electron. 55(11), 3899–3907 (2008)

    Article  Google Scholar 

  19. B.K. Kim, W.K. Chung, K. Ohba, Design and performance tuning of sliding-mode controller for high-speed and high-accuracy positioning systems in disturbance observer framework. IEEE Trans. Ind. Electron. 56(10), 3798–3809 (2009)

    Article  Google Scholar 

  20. H. Hu, P.Y. Woo, Fuzzy Supervisory Sliding-Model and Neural-Network Control For Robotic Manipulators. IEEE Trans. Ind. Electron 53(3), 929–940-3853, (2006)

    Google Scholar 

  21. Y.W. Liang, S.D. Xu, L.W. Ting, T-S model-based SMC reliable design for a class of nonlinear control systems. IEEE Trans. Ind. Electron. 56(9), 3286–3295 (2009)

    Article  Google Scholar 

  22. C.S. Chen, Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Trans. Ind. Electron. 55(9), 3402–3414 (2008)

    Article  Google Scholar 

  23. G. Colin, Y. Chamaillard, G. Bloch, G. Corde, Neural control of fast nonlinear systems-application to a turbocharged SI engine with VCT. IEEE Trans. Neural Networks 18(4), 1101–1113 (2007)

    Article  Google Scholar 

  24. S. Liu, B. Yao, Coordinate control of energy saving programmable valves. IEEE Trans. Control Syst. Technol. 16(1), 34–45 (2008)

    Article  Google Scholar 

  25. J. Zhang, A.J. Morris, Recurrent neuro-fuzzy networks for nonlinear process modeling. IEEE Trans. Neural Networks 10(2), 313–326 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Appendices

Appendix A

Derivation of the sliding mode surface (10.19), we have

$$ \begin{aligned} & \dot{s}_{1} = C_{1} \dot{e}(t) + C_{2} \ddot{e}(t) \\ & \quad = C_{1} (\dot{r} - \dot{X}_{1} ) + C_{2} (\ddot{r} - \ddot{X}_{1} ) \\ \end{aligned} $$
(A.1)

According to the variable structure theory [5, 18], if

$$ s_{1}^{T} \dot{s}_{1} < 0 $$
(A.2)

Then the system can reach the sliding surface and thus is stable and can obtain the satisfactory tracking performance.

From the sub-system 1 in (10.13) and the sliding mode surface (10.19), we have

$$ \begin{aligned} s_{1}^{T} \dot{s}_{1} & = s_{1}^{T} \{ C_{1} (\dot{r} - \dot{X}_{1} ) + C_{2} (\ddot{r} - \ddot{X}_{1} )\} \\ & = s_{1}^{T} \{ C_{1} \dot{r} - C_{1} X_{2} + C_{2} \ddot{r} - C_{2} \dot{X}_{2} \} \\ \end{aligned} $$
(A.3)

From (10.13) and (10.21), we have

$$ \dot{X}_{2} = \varepsilon - C_{2}^{ - 1} C_{1} X_{2} + C_{2}^{ - 1} C_{1} \dot{r} + \ddot{r} + s_{1} + \beta $$
(A.4)

Inserting (A.4) into (A.3), we have

$$ \begin{aligned} s_{1}^{T} \dot{s}_{1} & = s_{1}^{T} C_{2} ( - s_{1} - \beta - \varepsilon ) \\ & = - s_{1}^{T} C_{2} s_{1} - \beta_{1} C_{2,(1,1)} s_{1,1} \text{sgn} (s_{1,1} ) \cdots \beta_{n} C_{2,(n,n)} \text{sgn} (s_{n,n} ) - s_{1}^{T} C_{2} \varepsilon \\ & = - s_{2}^{T} C_{2} s_{1} - \beta_{1} C_{2,(1,1)} \left| {s_{1,1} } \right| - \cdots - \beta_{n} C_{2,(n,n)} \left| {s_{n,n} } \right| - (\varepsilon_{1} C_{2,(1,1)} s_{1,1} + \cdots + \varepsilon_{n} C_{2,(n,n)} s_{n,n} ) \\ \end{aligned} $$
(A.5)

Since C2 is diagonal and positive matrix, its every element is positive. Thus, we have

$$ \begin{aligned} s_{1}^{T} \dot{s}_{1} & \le - s_{1}^{T} C_{2} s_{1} - \beta_{1} C_{2,(1,1)} \left| {s_{1,1} } \right| - \cdots - \beta_{n} C_{2,(n,n)} \left| {s_{n,n} } \right| + (\left| {\varepsilon_{1} } \right|C_{2,(1,1)} \left| {s_{1,1} } \right| + \cdots + \left| {\varepsilon_{n} } \right|C_{2,(n,n)} \left| {s_{n,n} } \right|) \\ & = - s_{2}^{T} C_{2} s_{1} + (\left| {\varepsilon_{1} } \right| - \beta_{1} )C_{2,(1,1)} \left| {s_{1,1} } \right| + \cdots + (\left| {\varepsilon_{n} } \right| - \beta_{n} )C_{2,(n,n)} \left| {s_{n,n} } \right| \\ \end{aligned} $$
(A.6)

Since \( \left[ {\begin{array}{*{20}c} {\beta_{1} } & \cdots & {\beta_{n} } \\ \end{array} } \right]^{T} \) is the bound of the modeling error \( \varepsilon = \left[ {\begin{array}{*{20}c} {\varepsilon_{1} } & \cdots & {\varepsilon_{n} } \\ \end{array} } \right]^{T} \) and \( \left| {\varepsilon_{i} } \right| \le \beta_{i} \), we can obtain

$$ \left| {\varepsilon_{i} } \right| - \beta_{i} \prec 0\quad (i = 1, \cdots ,n) $$
(A.7)

According to (A.6) and (A.7), the following inequality is satisfied

$$ s_{1}^{T} \dot{s}_{1} \le 0 $$
(A.8)

Thus, the sub system 1 is stable and the sliding mode s1 = 0 will be reached in a finite time. In the sliding mode s1 = 0, the tracking error e(t) will converge to zero through choosing the suitable parameters C1 and C2, which means that the working plate position X 1(t) can track the reference signal r(t). Thus, the sub system 1 can obtain the satisfactory tracking performance.

Appendix B

From (10.13) and (10.22), we have

$$ \dot{P}_{i} = \dot{P}_{i,r} + \frac{{\beta_{t} }}{{V_{i} }}\{ \alpha \,\text{sgn} (s_{2} ) - (\Delta g_{i} - \Delta \tilde{g}_{i} )\} $$
(B.1)

Derivation of the sliding mode surface s 2 and consideration of (B.1), we have

$$ \begin{aligned} \dot{s}_{2} & = \dot{P}_{i,r} - \dot{P}_{i} \\ & = \frac{{\beta_{t} }}{{V_{i} }}\{ \alpha \,\text{sgn} (s_{2} ) - (\Delta g_{i} - \Delta \tilde{g}_{i} )\} \\ \end{aligned} $$
(B.2)

Choosing a Lyapunov function as \( V = 0.5S_{2}^{2} \) and considering Eq. (B.2) and the coefficient \( \beta_{t} /V_{i} > 0 \), we have

$$ \begin{aligned} \dot{V} & = s_{2} \dot{s}_{2} \\ & = \frac{{\beta_{t} }}{{V_{i} }}\{ - s_{2} a\,\text{sgn} (s_{2} ) - s_{2} (\Delta g_{i} - \Delta \tilde{g}_{i} )\} \\ & = \frac{{\beta_{t} }}{{V_{i} }}\{ - \left| {s_{2} } \right|a + s_{2} (\Delta g_{i} - \Delta \tilde{g}_{i} )\} \\ & \le \frac{{\beta_{t} }}{{V_{i} }}\{ - \left| {s_{2} } \right|a + \left| {s_{2} } \right|(\left| {\Delta g_{i} - \Delta \tilde{g}_{i} } \right|)\} \\ & = \frac{{\beta_{t} }}{{V_{i} }}\{ - \left| {s_{2} } \right|(a - \left| {\Delta g_{i} - \Delta \tilde{g}_{i} } \right|)\} \\ \end{aligned} $$
(B.3)

Since α is the bound of the modeling error \( \Delta g_{i} - \Delta \tilde{g}_{i} \) and

$$ \left| {\Delta g_{i} - \Delta \tilde{g}_{i} } \right| \prec a $$
(B.4)

From (B.3) and (B.4), we have

$$ \dot{V} < 0 $$
(B.5)

Thus, the sub system 2 is stable and can obtain the satisfactory tracking performance.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). System-Decomposition Based Multi-level Control Approach. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics