Skip to main content

Spoofing Countermeasure Techniques

  • Chapter
  • First Online:
Book cover Adaptive Interference Mitigation in GNSS

Part of the book series: Navigation: Science and Technology ((NASTECH))

  • 960 Accesses

Abstract

As described in Chap. 1, common types of intentional interference mainly include jamming and spoofing. Chapters 2 and 3 mainly discuss jamming. In this chapter we discuss techniques to suppress the interference emitted by spoofers. Different from jamming, the power level, signal format and frequency spectrum structure of interference emitted by spoofers are similar to the authentic satellite signals. The intent of spoofing is to trick a receiver locking onto interference without awareness, so a navigational positioning result, which seems to be reliable but actually misleading, can be produced. In the worst case, a receiver may be controlled by spoofers. Under the impacts of spoofing, receivers usually are not aware of the spoofers, so consequently spoofing is more harmful than jamming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. John A. Vulnerability assessment of the transportation infrastructure relying on the global positioning system. Volpe National Transportation Systems Center; 2001.

    Google Scholar 

  2. Shepard DP, Humphreys TE. Characterization of receiver response to a spoofing attack. In: Proceedings of the 24th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS 2011), September 20–23, Portland, OR. 2011. p. 2608–18.

    Google Scholar 

  3. Humphreys TE, Ledvina BM, Psiaki ML, et al. Assessing the spoofing threat: development of a portable GPS civilian spoofer. In: Proceedings of ION GNSS 21st international technical meeting of the satellite division, September 16–19, Savannah, GA. 2008. p. 2314–25.

    Google Scholar 

  4. Montgomery YP, Humphreys TE, Ledvina BM. Receiver-autonomous spoofing detection: experimental results of a multi-antenna receiver defense against a portable civil GPS spoofer. In: Proceedings of the Institute of Navigation, national technical meeting, January 26–28, Anaheim, CA. 2009. p. 124–30.

    Google Scholar 

  5. Humphreys TE. Robust and resilient navigation. ION GNSS + 2015 Tutorial, September 15, 2015, Tampa, USA. 2015.

    Google Scholar 

  6. http://www.engr.utexas.edu/features/superyacht-gps-spoofing.

  7. Jafarnia JA, Broumandan A, Nielsen J, et al. GPS spoofer countermeasure effectiveness based on signal strength, noise power and C/N0 observables. Int J Satell Commun Netw. 2012;30(4):181–91.

    Article  Google Scholar 

  8. Dehghanian V, Nielsen J, Lachapelle G. GNSS spoofing detection based on receiver C/N0 estimates. In: Proceedings of the ION GNSS meeting, Nashville, Tennessee. Institute of Navigation; 2012.

    Google Scholar 

  9. Kaplan ED, Hegarty CJ. Understanding GPS principles and applications. 2nd ed. Boston, Mass, USA: Artech House; 2006.

    Google Scholar 

  10. Juang JC. GNSS spoofing analysis by VIAS. Coordinates Magazine. 2011.

    Google Scholar 

  11. Wen HQ, Huang PYR, Dyer J, et al. Countermeasures for GPS signal spoofing. In: Proceedings of the 18th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS’05), September 2005, Long Beach, CA, USA. 2015. p. 1285–90.

    Google Scholar 

  12. Montgomery PY, Humphreys TE, Ledvina BM. Receiver-autonomous spoofing detection: experimental results of a multi-antenna receiver defense against a portable civil GPS spoofer. In: Proceedings of the Institute of Navigation—international technical meeting (ITM’09), January 2009, Anaheim, CA, USA. 2009. p. 124–30.

    Google Scholar 

  13. Psiaki ML, O’Hanlon BW, Powell, et al. GNSS spoofing detection using two-antenna differential carrier phase. In: Proceedings of the ION GNSS + Meeting. Tampa, FL: Institute of Navigation; 2014.

    Google Scholar 

  14. Castaneda MH, Stein M, Antreich F, et al. Joint space-time interference mitigation for embedded multi-antenna GNSS receivers. 2013.

    Google Scholar 

  15. McDowell CE. GPS spoofer and repeater mitigation system using digital spatial nulling—US Patent 7250903 B1. 2007.

    Google Scholar 

  16. Nielsen J, Broumandan A, Lachapelle G. Spoofing detection and mitigation with a moving handheld receiver. GPS World. 2010;21(9):27–33.

    Google Scholar 

  17. Moshavi S. Multi-user detection for DS-CDMA communications. IEEE Commun Mag. 1996;34(10):124–36.

    Article  Google Scholar 

  18. Phelts RE. Multicorrelator techniques for robust mitigation of threats to GPS signal quality. Palo Alto, CA, USA: Standford University; 2001.

    Google Scholar 

  19. Shepard DP, Humphreys TE. Characterization of receiver response to a spoofing attack. In: Proceedings of the 24th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS’11), September 2011, Portland, OR, USA. 2011. p. 2608–18.

    Google Scholar 

  20. Cavaleri A, Motella B, Pini M, et al. Detection of spoofed GPS signals at code and carrier tracking level. In: Proceedings of the 5th ESA workshop on satellite navigation technologies and European workshop on GNSS signals and signal processing (NAVITEC’10), December 2010. 2010. p. 1–6.

    Google Scholar 

  21. Pini M, Fantino M, Cavaleri A, et al. Signal quality monitoring applied to spoofing detection. In: Proceedings of the 24th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS’11), September 2011, Portland, OR, USA. 2011. p. 1888–96.

    Google Scholar 

  22. Jafarnia-Jahromi A, Lin T, Broumandan A, et al. Detection and mitigation of spoofing attack on a vector based tracking GPS receiver. In: Proceedings of the international technical meeting of the Institute of Navigation, January 2012, Newport Beach, CA, USA. 2012. p. 790–800.

    Google Scholar 

  23. White NA, Maybeck PS, Devilbiss SL. Detection of interference/jamming and spoofing in a DGPS-aided inertial system. IEEE Trans Aerosp Electron Syst. 34(4):1208–17.

    Google Scholar 

  24. Cheng X, Xu J, Cao K, et al. An authenticity verification scheme based on hidden messages for current civilian GPS signals. In: Proceedings of the 4th international conference on computer sciences and convergence information technology, November 2009, Wuhan, China. 2009. p. 345–52.

    Google Scholar 

  25. Humphreys TE. Detection strategy for cryptographic GNSS anti-spoofing. IEEE Trans Aerosp Electron Syst. 2013;49(2):1073–90.

    Article  Google Scholar 

  26. Wesson KD, Rothlisberger MP, Humphreys TE. Practical cryptographic civil GPS signal authentication, navigation. J Inst Navig. 2012;59(3):177–93.

    Article  Google Scholar 

  27. Hernandez IF, Rijmen V, Granados GS, et al. Design drivers, solutions and robustness assessment of navigation message authentication for the Galileo open service. In: Proceedings of the ION IEEE+meeting. 2014.

    Google Scholar 

  28. Kerns AJ, Wesson KD, Humphreys TE. A blueprint for civil GPS navigation message authentication. In: Proceedings of the IEEE/ION PLANS meeting, May 2014.

    Google Scholar 

  29. Ledvina BM, Bencze WJ, Galusha B, et al. An in-line anti-spoofing device for legacy civil GPS receivers. In: Proceedings of the Institute of Navigation—international technical meeting. 2010. p. 698–712.

    Google Scholar 

  30. Khanafseh S, Roshan N, Langel S, et al. GPS spoofing detection using RAIM with INS coupling, in position, location and navigation symposium-PLANS 2014, 2014 IEEE/ION. IEEE; 2014. p. 1232–9.

    Google Scholar 

  31. Daneshmand S, Jafarnia-Jahromi A, Broumandan A, et al. A low complexity GNSS spoofing mitigation technique using a double antenna array. GPS World Mag. 2011;22(12):44–6.

    Google Scholar 

  32. Psiaki ML, O’Hanlon BW, Bhatti JA, et al. GPS spoofing detection via dual-receiver correlation of military signals. IEEE Trans Aerosp Electron Syst. 2013;49(4):2250–67.

    Article  Google Scholar 

  33. Wesson KD, Shepard DP, Bhatti JA. An evaluation of the vestigial signal defense for civil GPS anti-spoofing. In: Proceedings of the 2011 ION GNSS conference, Portland, OR. 2011. p. 2646–56.

    Google Scholar 

  34. Le Liboux JC, Descomps N, Luneau G. Interference signal reduction method and receiver. 2010, No. 8345730 B2.

    Google Scholar 

  35. Daneshmand S, Jafarnia-Jahromi A, Broumandan A, et al. A low-complexity GPS anti-spoofing method using a multi-antenna array. In: ION GNSS12 conference, Session B3, Nashville, TN. 2012. p. 1233–43.

    Google Scholar 

  36. Zhang Y, Wang L, Wang W, et al. Spoofing jamming suppression techniques for GPS based on DOA estimating. In: Proceedings of 2014 China satellite navigation conference. Berlin, Heidelberg: Springer; 2014. p. 683–94.

    Google Scholar 

  37. Li J, Stoica P. Angle and waveform estimation via RELAX. IEEE Trans Aerosp Electron Syst. 1997;33(3):1077–87.

    Article  Google Scholar 

  38. Li J, Wu R. An efficient algorithm for time delay estimation. IEEE Trans Signal Process. 1998;46(8):2231–5.

    Article  Google Scholar 

  39. Zhang Y, Wang L, Wang W, et al. Spoofing interference suppression for GNSS via estimating steering vectors. In: Proceedings of 2015 China satellite navigation conference. Berlin, Heidelberg: Springer; 2015.

    Google Scholar 

  40. Wang L, Wu R, Zhang Y, et al. Multi-type interference suppression for GNSS based on despread-respread method. Tempa, USA: ION GNSS+2015; 2015.

    Google Scholar 

  41. Lu D, Wu R, Wang L, et al. A blind adaptive GPS interference method based on code word, China: ZL200910069091.3. 2009.

    Google Scholar 

  42. Bao L, Wu R, Lu D, et al. A novel adaptive algorithm for spoofing and jamming suppression in GNSS. J Commun Technol Electron. 2015.

    Google Scholar 

  43. Inder JG. SMI adaptive antenna arrays for weak interfering signals. IEEE Trans Antennas Propag. 1986;34(10):1237–42.

    Article  Google Scholar 

  44. Wu R, Bao Z, Ma Y. Control of peak sidelobe level in adaptive arrays. IEEE Trans Antennas Propag. 1996;44(10):1341–7.

    Article  Google Scholar 

  45. Wu R, Bao Z. Array pattern distortion and remedies in space-time adaptive processing for airborne radar. IEEE Trans Antennas Propag. 1998;46(7):963–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renbiao Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wu, R., Wang, W., Lu, D., Wang, L., Jia, Q. (2018). Spoofing Countermeasure Techniques. In: Adaptive Interference Mitigation in GNSS. Navigation: Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5571-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5571-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5570-6

  • Online ISBN: 978-981-10-5571-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics