Skip to main content

Principles of Satellite Navigation System

  • Chapter
  • First Online:

Part of the book series: Navigation: Science and Technology ((NASTECH))

Abstract

Satellite navigation is the technology that uses navigation satellites to transmit positioning signals, in order to provide real-time positioning for users in the air, on the ground, at sea, and in space. Since it can provide high-precision information such as three-dimensional position, velocity and time (PVT) for any location and on any people and objects, it has unparalleled advantages over other navigational technologies. Thus, it can be widely applied in civil fields such as transportation, surveying, mapping, telecommunications, water conservancy, fishery, forest fire prevention, disaster reduction, and disaster relief. It can also be used in military fields such as aerospace and weapon guidance. Consequently, the satellite navigation system has become a keystone for a country’s space information infrastructure, and an important indicator to reflect its status as a modern country, a great power, and the country’s comprehensive national strength. Major countries and organizations all around the world have been vigorously developing satellite navigation systems with various characteristics.

The original version of this chapter was revised: For detailed information please see Erratum. The erratum to this chapter is available at 10.1007/978-981-10-5571-3_7

This is a preview of subscription content, log in via an institution.

References

  1. Misra P, Enge P. Global positioning system: signals, measurements, and performance. Lincoln, MA: Ganga-Jamuna Press; 2004.

    Google Scholar 

  2. Kaplan ED, Hegarty CJ. Understanding GPS: principles and applications. Artech House; 2005.

    Google Scholar 

  3. http://www.gps.gov/systems/gps/modernization/.

  4. http://www.nis-glonass.ru/en/glonass/.

  5. http://www.esa.int/Our_Activities/Navigation.

  6. http://www.beidou.gov.cn/xtjs.html.

  7. Van Nee DJR, Coenen AJRM. New fast GPS code-acquisition technique using FFT. Electron Lett. 1991;27(2):158–60.

    Article  Google Scholar 

  8. Sklar JR. Interference mitigation approaches for the global positioning system. Lincoln Lab J. 2003;14(2):489–509.

    MathSciNet  Google Scholar 

  9. O’Brien AJ. Adaptive antenna arrays for precision GNSS receivers. PhD dissertation. The Ohio State University; 2009.

    Google Scholar 

  10. Amin MG, Sun W. A novel interference suppression scheme for global navigation satellite systems using antenna array. IEEE J Sel Areas Commun. 2005;23(5):999–1012.

    Article  Google Scholar 

  11. Borio D. GNSS acquisition in the presence of continuous wave interference. IEEE Trans Aerosp Electron Syst. 2010;46(1):47–60.

    Article  Google Scholar 

  12. Hinedi S, Statman JI. High-dynamic GPS trackings final report. JPL Publication. 1988;88–35:9–11.

    Google Scholar 

  13. Humphrey TE, Ledvina BM, Psiaki ML, et al. Assessing the spoofing threat: development of a portable GPS civilian spoofer. In: The 21th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS), 16–19 Sep. 2008, Savannah Georgia, USA. 2008. p. 2314–25.

    Google Scholar 

  14. Daneshmand S, Jafarnia-Jahromi A, Broumandan A, et al. A low complexity GNSS spoofing mitigation technique using a double antenna array. GPS World Mag. 2011;22(12):44–6.

    Google Scholar 

  15. Fante RL, Vaccaro JJ. Cancellation of jammers and jammer multipath in a GPS receiver. IEEE Aerosp Electron Syst Mag. 1998;13(11):25–8.

    Article  Google Scholar 

  16. Kalyanarman SK, Braasch MS, Kelly JM. Code tracking architecture influence on GPS carrier multipath. IEEE Trans Aerosp Electron Syst. 2006;42(2):548–61.

    Article  Google Scholar 

  17. Daneshmand S, Broumandan A, Asl N, et al. GNSS multipath mitigation with a moving antenna array. IEEE Trans Aerosp Electron Syst. 2013;49(1):693–8.

    Article  Google Scholar 

  18. Hegarty C, Kim T, Ericson S. Methodology for determining compatibility of GPS L5 with existing systems and preliminary results. In: Proceedings of the Institute of Navigation annual meeting. 1999. no 1, p. 1–10.

    Google Scholar 

  19. Gao GX, Denks H, Steingassnd A, et al. DME interference mitigation based on flight test data over European hot spot. GPS Solut. 2013;17(4):561–73.

    Article  Google Scholar 

  20. Lu D, Wu R, Liu H. Global positioning system anti-jamming algorithm based on period repetitive CLEAN. IET Radar Sonar Navig. 2013;7(2):164–9.

    Article  Google Scholar 

  21. Wang W, Du Q, Wu R, et al. Interference suppression with flat gain constraint for satellite navigation systems. IET Radar Sonar Navig. 2015;9(7):852–6.

    Article  Google Scholar 

  22. Wu R, Li C, Lu D. Power minimization with derivative constraints for high dynamic GPS interference suppression. Sci China: Inf Sci. 2012;55(4):857–66.

    Article  MathSciNet  Google Scholar 

  23. Lu D, Wu R, Wang W. Robust widenull anti-jamming algorithm for high dynamic GPS. In: International conference on signal processing proceedings. 2012. p. 378–81.

    Google Scholar 

  24. Ma Y, Lu D, Wang W, et al. A high-dynamic null-widen GPS anti-jamming algorithm based on statistical model of the changing interference DOA. China Satell Navig Conf. 2014;(I):695–702.

    Google Scholar 

  25. Wu R, Ge L, Lu D, et al. A high-dynamic wideband interference suppression in GNSS via reduced-rank STAP. In: Proceedings of the 28th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2015). 2015.

    Google Scholar 

  26. Lu D, Li S, Wu R. Simultaneous null and main lobe widening for jamming suppression in attitude high-dynamic GNSS receiver. In: Proceedings of the 28th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2015). 2015.

    Google Scholar 

  27. Zhang Y, Wang L, Wang W, et al. Spoofing jamming suppression techniques for GPS based on DOA estimating. China Satell Navig Conf. 2014;(I):683–93.

    Google Scholar 

  28. Zhang Y, Wang L, Wang W, et al. Spoofing interference suppression for GNSS based on estimating steering vectors. China Satell Navig Conf. 2015;I:765–71.

    Google Scholar 

  29. Wang L, Wu R, Zhang Y, et al. Multi-type interference suppression for GNSS based on despread-respread method. In: Proceedings of the 28th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS + 2015). 2015.

    Google Scholar 

  30. Wu R, Jia Q, Wang W. Efficient FFT-based algorithms for multipath interference mitigation in GNSS. In: Fourier transform signal processing and physical sciences. INTECH; 2015.

    Google Scholar 

  31. Li J, Wang W, Lu D, et al. A correlate-based GPS multipath time delay estimation algorithm. China Satell Navig Conf. 2014;I:53–62.

    Google Scholar 

  32. L J, Wu R, Lu D. GPS multipath interference suppression algorithm based on decoupled parameter estimation theory. Signal Process. 2011;27(12):1884–8.

    Google Scholar 

  33. Li J, Wu R, Wang W, et al. A novel GPS signal acquisition algorithm. Adv Inf Sci Serv Sci. 2012;4(17):597–604.

    Google Scholar 

  34. Li J, Wu R, Wang W, et al. GPS fine time delay estimation based on decoupled parameter estimation theory. In: International conference on signal processing proceedings. 2012. p. 236–40.

    Google Scholar 

  35. Jia Q, Wu R, Wang W, et al. Multipath interference mitigation in GNSS via WRELAX. GPS Solut. 2017;21(2):487–98.

    Article  Google Scholar 

  36. Li L, Wang W, Lu D, et al. Wavelet packet transformation based technique in mitigation DME pulsed interference for GNSS. China Satell Navig Conf. 2014;I:715–24.

    Google Scholar 

  37. Wu R, Wang W, Li L, et al. Distance measuring equipment interference suppression based on parametric estimation and wavelet-packet transformation for global navigation satellite systems. IEEE Trans Aerosp Electron Syst. 2016;52(4):1607–17.

    Article  Google Scholar 

  38. Hu T, Wang L, Wu R. Study on wideband and pulse interference mitigation techniques with RAW BD data. ION GNSS + 2015.

    Google Scholar 

  39. Fang W, Wu R, Wang W, et al. DME pulse interference suppression based on NLS for GPS. In: International conference on signal processing proceedings. 2012. p. 174–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renbiao Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wu, R., Wang, W., Lu, D., Wang, L., Jia, Q. (2018). Principles of Satellite Navigation System. In: Adaptive Interference Mitigation in GNSS. Navigation: Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5571-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5571-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5570-6

  • Online ISBN: 978-981-10-5571-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics