Skip to main content

Microbial Volatile in Defense

  • Chapter
  • First Online:

Abstract

Microbial volatile organic compounds (MVOCs) produced by microorganisms like bacteria and fungi are eco-friendly and considered a cost-effective sustainable strategy. There is potency for microbial VOCs in biotechnological applications as agriculture, industry, and medicine. Fungal and bacterial microbial volatile organic compounds (MVOCs) can be used instead of harmful pesticides, fungicides, and bactericides to protect plants from pathogens and increase crop productivity. MVOCs can be used to improve human health by characterization of volatiles released by lower respiratory tract bacterial pathogens and their effective role as diagnostic markers in patient breathe testing. VOCs emitted by the human body, such as those which are released from the gut, have a great potential for the diagnostic and therapeutic inspections and help in the identification of liver enzyme activities and consequently investigating the influence of the metabolites on the liver function during disease development. This gives credit/point for the microbes as a promising tool for biological control that manages the disease and in the meantime saves the humanity and surrounding environment. In this chapter, we would like to draw the attention to the importance of microbial volatile organic compounds in the defense as general mechanism, and the chemistry of some MVOCs which has great role in the defense. Chat Conversation EndType a message.

This is a preview of subscription content, log in via an institution.

References

  • Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102(20):9718–9722

    Article  CAS  PubMed  Google Scholar 

  • Aochi YO, Farmer WJ (2005) Impact of soil microstructure on the molecular transport dynamics of 1, 2-dichloroethane. J Geod 127:137–153

    Article  CAS  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert G (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Article  Google Scholar 

  • Atkinson R, Tuazon EC, Aschmann SM (2000) Atmospheric chemistry of 2-pentanone and 2-heptanone. Environ Sci Technol 34(4):623–631

    Article  CAS  Google Scholar 

  • Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, White JW (2000) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee D, Strobel G, Geary B, Sears J, Ezra D, Liarzi O, Coombs J (2010) Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology 1:179

    Article  CAS  Google Scholar 

  • Barr JG (1976) Effects of volatile bacterial metabolites on the growth, sporulation and mycotoxin production of fungi. J Sci Food Agric 27(4):324–330

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JG (2011) Diagnostic tests for agents of community-acquired pneumonia. Clin Infect Dis J 52:S296–S304

    Article  Google Scholar 

  • Batterman SA (1995) Sampling and analysis of biological volatile organic compounds. In: Burge HA (ed) Bioaerosols. CRC Press, Boca Raton, pp 249–268

    Google Scholar 

  • Bayer CW, Crow S (1994) Odorous volatile emissions from fungal contamination. In: Teichman KY (ed) Proceedings from IAQ’93: operating and maintaining buildings for health, comfort and productivity. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, pp 165–170

    Google Scholar 

  • Bentley R, Bennett JW (1988) Biosynthesis of secondary metabolites. In: Berry DR (ed) Physiology of industrial fungi. Blackwell Scientific Publications, Oxford, pp 161–183

    Google Scholar 

  • Berglund B, Johansson I (1996) Health effects of volatile organic compounds in indoor air. Archives of the Center for Sensory Research 3:67

    Google Scholar 

  • Bernier SP, Letoffe S, Delepierre M (2011) Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol Microbiol 81:705–716

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Connor EC (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Börjesson T, Stöllman U, Adamek P, Kaspersson A (1989) Analysis of volatile compounds for detection of molds in stored cereals. Cereal Chem 66(4):300–304

    Google Scholar 

  • Börjesson T, Stöllman U, Schnürer J (1992) Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains. Appl Environ Microbiol 58:2599–2605

    PubMed  PubMed Central  Google Scholar 

  • Bornehag CG, Blomquist G, Gyntelberg F, Järvholm B, Malmberg P, Nordvall L, Nielsen A, Pershagen G, Sundell J (2001) Dampness in buildings and health. Indoor Air 11:72–86

    Article  CAS  PubMed  Google Scholar 

  • Bornehag CG, Sundell J, Bonini S, Custovic A, Malmberg P, Skerfving S, Sigsgaard T, Verhoeff A (2004) Dampness in buildings as a risk factor for health effects, EUROEXPO: a multidisciplinary review of the literature (1998–2000) on dampness and mite exposure in buildings and health effects. Indoor Air 14:243–257

    Article  CAS  PubMed  Google Scholar 

  • Bos LDJ, Sterk PJ, Schultz MJ (2013) Volatile metabolites of pathogens: a systematic review. PLoS Pathog J 9(5):e1003311

    Article  CAS  Google Scholar 

  • Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Reciprocal oxylipin-mediated cross-talk in the Aspergillus – seed pathosystem. Mol Microbiol 67:378–391

    Article  CAS  PubMed  Google Scholar 

  • Brown SK (1999) Occurrence of volatile organic compounds in indoor air. In: Salthammer T (ed) Organic indoor air pollutants – occurrence, measurement, evaluation, pp 171–184

    Google Scholar 

  • Champe SP, Rao P, Chang A (1987) An endogenous inducer of sexual development in Aspergillus nidulans. J Gen Microbiol 133:1383–1388

    CAS  PubMed  Google Scholar 

  • Chastre J, Fagon J (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903

    Article  PubMed  Google Scholar 

  • Chiron N, Michelot D (2005) Odeurs de champignons: chimie et rôle dans les interactions biotiquesdune revue. Cryptogam Mycol 26:299–364

    Google Scholar 

  • Cho IH, Namgung HJ, Choi HK, Kim YS (2008a) Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing). Food Chem 106:71–76

    Article  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008b) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact J 21:1067–1075

    Article  CAS  Google Scholar 

  • Christensen S, Kolomiets M (2011) The lipid language of plant-fungal interactions. Fungal Genet Biol 48:4–14

    Article  CAS  PubMed  Google Scholar 

  • Claeson AS (2006) Volatile organic compounds from microorganisms identification and health effects. In: Ume°a University medical dissertations, New Series No. 1052. The National Institute for Working Life, Sweden, pp 1–53

    Google Scholar 

  • Claeson AS, Sunesson AL (2005) Identification using versatile sampling and analytical methods of volatile compounds from Streptomyces albidoflavus grown on four humid building materials and one synthetic medium. Indoor Air 15(9):41–47

    Article  PubMed  Google Scholar 

  • Claeson AS, Levin JO, Blomquist G, Sunesson AL (2002a) Volatile metabolites from microorganisms grown on building materials. Proc Indoor Air 1:437–442

    Google Scholar 

  • Claeson AS, Levin JO, Blomquist G, Sunesson AL (2002b) Volatile metabolites from microorganisms grown on humid building materials and synthetic media. J Environ Monit 4:667–672

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2014) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant Soil J 379:261–274

    Article  CAS  Google Scholar 

  • Cortes-Barco A, Goodwin P, Hsiang T (2010a) Comparison of induced resistance activated by benzothiadiazole,(2R,3R)-butanediol and anisoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59:643–653

    Article  CAS  Google Scholar 

  • Cortes-Barco A, Hsiang T, Goodwin P (2010b) Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or anisoparaffin mixture. Ann Appl Biol 157:179–189

    Article  CAS  Google Scholar 

  • Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD (2010) Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ 18:340–c2096

    Google Scholar 

  • Dainty RH, Edwards RA, Hibbard CM (1984) Volatile compounds associated with the aerobic growth of some Pseudomonas species on beef. J Appl Bacteriol 57(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Dainty RH, Edwards RA, Hibbard CM, Marnewick JJ (1989) Volatile compounds associated with microbial growth on normal and high pH beef stored at chill temperatures. J Appl Bacteriol 66(4):281–289

    Article  CAS  PubMed  Google Scholar 

  • Demyttenaere JC, Morina RM, Sandra P (2003) Monitoring and fast detection of mycotoxin-producing fungi based on headspace solid-phase microextraction and headspace sorptive extraction of the volatile metabolites. J Chromatogr A 985(1–2):127–135

    Article  CAS  PubMed  Google Scholar 

  • Demyttenaere JC, Morina RM, DeKimpe N, Sandra P (2004) Use of headspace solid-phase microextraction and headspace sorptive extraction for the detection of the volatile metabolites produced by toxigenic Fusarium species. J Chromatogr A 1027(1–2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Duwaerts CC, Maher JJ (2014) Mechanisms of liver injury in non-alcoholic steatohepatitis. Curr Hepatol Rep 13(2):119–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703

    Article  CAS  PubMed  Google Scholar 

  • Ezquer I, Li J, Ovecka M, Baroja-Fernández E, Muñoz FJ, Montero M, Cerio JD, Hidalgo M, Sesma MT, Bahaji A, Etxeberria Ed, Pozueta-Romero J (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant Cell Physiol J 51:1674–1693

    Article  CAS  Google Scholar 

  • Farag MA, Zhang H, Ryu CM (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39(7):1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiddaman DJ, Rossall S (1993) The production of antifungal volatiles by Bacillus subtilis. J Appl Bacteriol 74:119–126

    Google Scholar 

  • Fiedler K, Schutz E, Geh S (2001) Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204:111–121

    Article  CAS  PubMed  Google Scholar 

  • Fiedler N, Laumbach R, Kelly-Mcneil K, Lioy P, Fan ZH, Zhang J, Ottenweller J, Ohman-Strickland P, Kipen H (2005) Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress. Environ Health Perspect 113:1542–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer G, Müller T, Schwalbe R, Ostrowski R, Dott W (2000) Exposure to airborne fungi, MVOC and mycotoxins in bio -waste-handling facilities. Int J Hyg Environ Health 203:97–104

    Article  CAS  PubMed  Google Scholar 

  • Fraatz MA, Zorn H (2010) Fungal flavours. In: Hofrichter M (ed) The mycota X: industrial applications, 2nd edn. Springer-Verlag, Berlin, pp 249–264

    Google Scholar 

  • Garbeva P, Voesenek K, van Elsas JD (2004) Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36:1453–1463

    Article  CAS  Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, deBoer W (2014a) Volatile-mediated volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol 5:289

    Article  PubMed  PubMed Central  Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, de Boer W (2014b) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87:639–649

    Article  CAS  PubMed  Google Scholar 

  • Garner CE, Smith S, Costello B, White P, Spencer R, Probert CSJ, Ratcliffe NM (2007) Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J 21:1675–1688

    Article  CAS  PubMed  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Gorny RL, Reponen T, Willeke K, Schmechel D, Robine E, Boissier M, Grinshpun SA (2002) Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 68(7):3522–3531

    Google Scholar 

  • Grosset J (2003) Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother J 47:833–836

    Article  CAS  Google Scholar 

  • Hamberg M, Su C, Oliw E (1998) Manganese lipoxygenase. Discovery of a bisallylic hydroperoxide as product and intermediate in a lipoxygenase reaction. J Biol Chem 273:13080–13088

    Article  CAS  PubMed  Google Scholar 

  • Hamilton-Kemp T, Newman M, Collins R, Elgaali H, Keshun Yu, Archbold D (2005) Production of the long-chain alcohols octanol, decanol and dodecanol by Escherichia coli. Curr Microbiol 51(2):82–86

    Article  CAS  PubMed  Google Scholar 

  • Han H, Lee S, Moon J, Park K, Yang K, Kim B, Kim Y, Lee M, Anderson A, Kim Y (2006) GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant Microbe Interact J 19:924–930

    Article  CAS  Google Scholar 

  • Henao-Mejia J, Elinav E, Jin C (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Owell (2007) Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supra genome. Bacteriol J 189:8186–8195

    Article  CAS  Google Scholar 

  • Hörnsten L, Su C, Osbourn AE, Garosi P, Hellman U, Wernstedt C, Oliw EH (1999) Cloning of linoleate diol synthase reveals homology with prostaglandin H synthases. J Biol Chem 274:28219–28224

    Article  PubMed  Google Scholar 

  • Howe LR (2007) Inflammation and breast cancer: cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 9:210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol J 6:19–26

    Article  Google Scholar 

  • Hyvärinen A, Meklin T, Vepsäläinen A, Nevalainen A (2002) Fungi and actinobacteria in moisture-damaged building materials – concentrations and diversity. Int Biodeteroration Biodegrad 49:27–37

    Article  Google Scholar 

  • Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Jelen H, Wasowicz E (1998) Volatile fungal metabolites and their relation to the spoilage of agricultural commodities. Food Rev Int 14(4):391–426

    Article  CAS  Google Scholar 

  • Johansson N, Kalin M, Tiveljung-Lindell A, Giske CG, Hedlund J (2009) Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods. Clin Infect Dis J 50:202–209

    Article  Google Scholar 

  • Jones AP (1999) Indoor air quality and health. Atmos Environ 33:4535–4564

    Article  CAS  Google Scholar 

  • Juenger M, Vautz W, Kuhns M, Hofmann L, Ulbricht S, Baumbach JI (2012) Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Appl Microbiol Biotechnol 93:2603–2614

    Article  CAS  Google Scholar 

  • Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant-microbe interface. J Chem Ecol 39:810–825

    Article  CAS  PubMed  Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Ann Rev Phytopathol 47:153–176

    Article  CAS  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol J 81:1001–1012

    Article  CAS  Google Scholar 

  • Kai M, Crespo E, Cristescu SM, Harren FJ, Francke W, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976. doi:10.1007/s00253-010-2810-1

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci 20(4):206–211

    Article  CAS  PubMed  Google Scholar 

  • Karlshøj K, Larsen TO (2005) Differentiation of species from the Penicillium roqueforti group by volatile metabolite profiling. J Agric Food Chem 53(3):708–715

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006b) Analysis of defensive responses activated by volatile alloocimene treatment in Arabidopsis thaliana. Phytochem J 67:1520–1529

    Article  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006a) Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis Cinerea. Plant Sci J 170:715–723

    Article  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. Gen Plant Pathol J 73:35–37

    Article  CAS  Google Scholar 

  • Korpi A (2001) Faculty of natural and environmental sciences C129. Fungal volatile metabolites and biological responses to fungal exposure [thesis]. Kuopio University, Finland, pp 1–77

    Google Scholar 

  • Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  • Kwon YS, Ryu CM, Lee S, Park HB, Han KS, Lee JH, Lee K, Chung WS, Jeong MJ, Kim HK, Bae DW (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta J 232:1355–1370

    Article  CAS  Google Scholar 

  • La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284

    Article  PubMed  Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41(5):1001–1014

    Article  CAS  Google Scholar 

  • Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34:426–444

    Article  CAS  PubMed  Google Scholar 

  • Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of post-harvest apple decay and Rhizoctonia root rot on moth orchid. Appl Microbiol J 106:1213–1219

    Article  CAS  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) MVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Létoffé S, Audrain B, Bernier SP, Delepierre M, Ghigo JM (2014) Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH. MBio 5(1):e00944–e00913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang H, Zhang X, Jun RAO, Huanwen CHEN (2008) Microbial volatile organic compounds: generation pathway sand mass spectrometric detection. J Chin Biotechnol 28:124–133

    Google Scholar 

  • Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1(5):657–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz MP, Wenger S, Maurhofer M, Defago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol J 48:447–455

    Article  CAS  Google Scholar 

  • Ma Q, Fonseca A, Liu W, Fields AT, Pimsler ML, Spindola AF, Tarone AM, Crippen TL, Tomberlin JK, Wood TK (2012) Proteus mirabilis inter kingdom swarming signals attract blow flies. ISME J 6:1356–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macias-Rubalcava ML, Hernandez-Bautista BE, Oropeza F, Duarte G, Gonzalez MC, Glenn AE, Hanlin RT, Anaya AL (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. Chem Ecol J 36:1122–1131

    Article  CAS  Google Scholar 

  • Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380

    Article  CAS  PubMed  Google Scholar 

  • Marilley L, Casey MG (2004) Flavors of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int J Food Microbiol 90:139–159

    Article  CAS  PubMed  Google Scholar 

  • Mattila JT, Thomas AC (2014) Nitric oxide synthase: non-canonical expression patterns. Front Immunol 5:478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mercier J, Jimenez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol J 31:1–8

    Article  Google Scholar 

  • Mercier J, Jimenez JI (2007) Potential of the volatile-producing fungus Muscodor albus for control of building molds. Can J Microbiol 53:404–410

    Article  CAS  PubMed  Google Scholar 

  • Mercier J, Manker D (2005) Biocontrol of soil-borne diseases and plant growth enhancement in green house soilless mix by the volatile-producing fungus Muscodor albus. Crop Prot J 24(4):355–362

    Article  Google Scholar 

  • Meruva NK, Penn JM, Farthing DE (2004) Rapid identification of microbial VOCs from tobacco molds using closed-loop stripping and gas chromatography/time-of-flight mass spectrometry. J Ind Microbiol Biotechnol 31(10):482–488

    Article  CAS  PubMed  Google Scholar 

  • Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854

    Article  CAS  PubMed  Google Scholar 

  • Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansion A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol J 76:342–351

    Article  CAS  Google Scholar 

  • Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiol J 156:270–277

    Article  CAS  Google Scholar 

  • Mochalski P, King J, Klieber M, Unterkofler K, Hinterhuber H, Baumann M, Amann A (2013) Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst 138:2134–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mølhave L, Clausen G, Berglund B, Ceaurriz JD, Kettrup A, Lindvall T, Maroni M, Pickering AC, Risse U, Rothweiler H, Seifert B, Younes M (1997) Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air 7:225–240

    Article  Google Scholar 

  • Morey P, Wortham A, Weber A, Horner E, Black M, Muller W (1997) Microbial VOCs in moisture damaged buildings. Healthy Build 1:245–250

    Google Scholar 

  • Muckschel B, Simon O, Klebensberger J, Graf N, Rosche B, Altenbuchner J, Pfannstiel J, Huber A, Hauer B (2012) Ethylene glycol metabolism by Pseudomonas putida. Appl Environ Microbiol 78(24):8531–8539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naraghi K, Sahgal N, Adriaans B, Barr H, Magan N (2010) Use of volatile fingerprints for rapid screening of antifungal agents for efficacy against dermatophyte Trichophyton species. Sens Actuat B Chem J 146:521–526

    Article  CAS  Google Scholar 

  • Nawrath T, Mgode GF, Weetjens B, Kaufmann SH, Schulz S (2012) The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria. Beilstein J Org Chem 8:290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevalainen A, Seuri M (2005) Of microbes and men. Indoor Air 15:58–64

    Article  PubMed  Google Scholar 

  • Nilsson A, Kihlström E, Lagesson HV, Wessén B, Szponar B, Larsson L, Tagesson C (2004) Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air 14:73–144

    Article  CAS  Google Scholar 

  • Noverr MC, Erb-Downward JR, Huffnagle GB (2003) Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 16:517–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo H, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagans E, Font X, Sanchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by bio filtration. J Hazard Mater 131:179–186

    Article  CAS  PubMed  Google Scholar 

  • Park MS, Ahn J, Choi GJ, Choi YH, Jang KS, Kim JC (2010) Potential of the volatile-producing fungus nodulisporium sp cf016 for the control of postharvest diseases of apple. Plant Pathol J 26:253–259. doi:10.5423/PPJ.2010.26.3.253

  • Park HB, Lee B, Kloepper JW, Ryu CM (2013) One shot-two pathogens blocked: exposure of Arabidopsis to hexadecane, a long chain volatile organic compound, confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae. Plant Signal Behav J 8:24619

    Article  CAS  Google Scholar 

  • Pasanen AL, Heinonen-Tanski H, Kalliokoski P, Jantunen MJ (1992) Fungal microcolonies on indoor surfaces an explanation for the base-level fungal spore counts in indoor air. Atmos Environ 26B(1):121–124

    Article  Google Scholar 

  • Peñuelas J, Asensio D, Holl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP (2014) Biogenic volatile emissions from the soil. Plant Cell Environ J 37:1866–1891

    Article  CAS  Google Scholar 

  • Perl T, Juenger M, Vautz W, Nolte J, Kuhns M, Zepelin MB (2011) Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry-metabolic profiling by volatile organic compounds. Mycoses 54:E828–E837

    Article  CAS  PubMed  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Phillips M, Basa-Dalay V, Blais J, Bothamley G, Chaturvedi A, Modi KD (2012) Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinburgh) 92:314–320

    Article  Google Scholar 

  • Piechulla P, Degenhardt J (2014) The emerging importance of microbial volatile organic compounds. Plant Cell Environ 37:811–812

    Article  CAS  PubMed  Google Scholar 

  • Que YA, Hazan R, Strobel BA, Maura D, He J, Kesarwani M, Panopoulos P, Tsurumi A, Giddey M, Wilhelmy J, Mindrinos MN, Rahme LG (2013) Quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One 8(12):e80140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raman I, Ahmed, Gillevet PM (2013) Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol J 11(7):868–875. e1–3

    Article  CAS  Google Scholar 

  • Ramirez JA, Anzueto AR (2011) Changing needs of community-acquired pneumonia. Antimicrob Chemother J 66:3–9

    Article  CAS  Google Scholar 

  • Redlich CA, Sparer J, Cullen MR (1997) Sick-building syndrome. Lancet 349:1013–1016

    Article  CAS  PubMed  Google Scholar 

  • Rello J, Ollendorf DA, Oster G, Vera-Llonch M, Bellm L, Redman R, Kollef MH (2002) Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest J 122(6):2115–2121

    Article  Google Scholar 

  • Riga E, Lacey LA, Guerra N (2008) Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biol Control., Orlando 45:380–385

    Article  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Romoli R, Papaleo MC, De Pascale D, Tutino ML, Michaud L, LoGiudice (2014) GC-MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp TB41. Metabolomics 10:42–51

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. P Natl Acad Sci 100(8):4927–4932

    Article  CAS  Google Scholar 

  • Sakuradani E, Ando A, Ogawa J, Shimizu S (2009) Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol 84:1–10

    Article  CAS  PubMed  Google Scholar 

  • Samson RA (1985) Occurrence of moulds in modern living and working environments. Eur J Epidemiol 1:54–61

    Google Scholar 

  • Sauer F, Schäfer C, Neeb P, Horie O, Moortgat GK (1999) Formation of hydrogen peroxide in the ozonolysis of isoprene and simple alkenes under humid conditions. Atmos Environ 33(2):229–241

    Article  CAS  Google Scholar 

  • Schleibinger H, Brattig C, Mangler M, Samwer H, Laußmann D, Eis D, Braun P, Marchl D, Nickelmann A, Rueden H (2002) Microbial volatile organic compounds (MVOC) as indicators for fungal damage. Proc. Indoor Air 4:707–712

    Google Scholar 

  • Schleibinger H, Brattig C, Mangler M, Laußmann D, Eis D, Braun P, Marchl D, Nickelmann A, Rueden H (2003) Are microbial volatile organic compounds (MVOC) useful predictors for hidden mould damage? In: Proceedings of healthy buildings, 2003, pp 706–710. ISIAQ, Singapore

    Google Scholar 

  • Schmidt R, Etalo DW, de Jager VGS, Zweers H, de Boer W, Garbeva P (2016) Microbial small talk: volatiles in fungal–bacterial interactions. Front Microbiol 6:1495

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Scott-Thomas AJ, Syhre S, Pattemore PK, Epton M, Laing R, Pearson J, Chambers ST (2010) 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas Aeruginosa in the cystic fibrosis lung. BMC Pulm Med 10:56–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shea JM, Del Poeta M (2006) Lipid signaling in pathogenic fungi. Curr Opin Microbiol 9:352–358

    Article  CAS  PubMed  Google Scholar 

  • Shim WB, Dunkle LD (2002) Identification of genes expressed during cercosporin biosynthesis in Cercospora zeae-maydis. Physiol Mol Plant Pathol 61:237–248

    Article  CAS  Google Scholar 

  • Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61:729–739

    Article  PubMed  Google Scholar 

  • Simon S, Petrášek J (2011) Why plants need more than one type of auxin. Plant Sci 180(3):454–460

    Google Scholar 

  • Song GC, Ryu CM (2013) Two volatile organic compounds trigger plant self-defense against abacterial pathogen and asucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819

    Google Scholar 

  • Splivallo R, Bossi S, Maffei M, Bonfante P (2007) Discrimination of truffle fruiting body versus mycelia aromas by stir bar sorptive extraction. Phytochem J 68:2584–2598

    Article  CAS  Google Scholar 

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol J 189:688–699

    Article  CAS  Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197

    Article  CAS  Google Scholar 

  • Stetzenbach LD (1998) Microorganisms and indoor air quality. Clin Microbiol Newsl 20:157–161

    Article  Google Scholar 

  • Stinson M, Ezra D, Hess WM, Sears J, Strobel G (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci J 165:913–922

    Article  CAS  Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An over view of endophytic microbes: endophytism defined. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–29

    Google Scholar 

  • Strobel GA (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Dirksen E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus a novel endophytic fungus. Microbiol J 147:2943–2950

    Article  CAS  Google Scholar 

  • Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/ pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett J 320:87–94

    Article  CAS  Google Scholar 

  • Styger G, Prior B, Bauer F (2011) Wine flavor and aroma. J Ind Microbiol Biotechnol 38:1145–1159

    Article  CAS  PubMed  Google Scholar 

  • Su C, Sahlin M, Oliw EH (1998) Kinetics of manganese lipoxygenase with a catalytic mononuclear redox center. J Biol Chem 273:20744–20751

    Article  CAS  PubMed  Google Scholar 

  • Sundberg C, Yu D, Franke-Whittle I, Kauppi S, Smars S, Insam H (2013) Effects of pH and microbial composition on odour in food waste composting. Waste Manag 33:204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunesson AL (1995) Volatile metabolites from microorganisms in indoor environments-sampling, analysis and identification [thesis]. Umea University and National Institute for Working Life, Sweden, pp 1–88

    Google Scholar 

  • Sunesson AL, Nilsson CA, Andersson B, Blomquist G (1996) Volatile metabolites produced by two fungal species cultivated on building materials. Ann Occup Hyg 40:397–410

    Article  CAS  PubMed  Google Scholar 

  • Suutari M, Rönkä E, Lignell U, Rintala H, Nevalainen A (2002) Characterisation of Streptomyces spp. isolated from water-damaged buildings. FEMS Microbiol Ecol 39:77–84

    Article  CAS  PubMed  Google Scholar 

  • Tellez MR, Schrader KK, Kobaisy M (2001) Volatile components of the cyanobacterium Oscillatoria perornata (Skuja). J Agric Food Chem 49(12):5989–5992

    Article  CAS  PubMed  Google Scholar 

  • Ten Brinke J, Selvin S, Hodgson A, Fisk W, Mendell M, Koshland C, Daisey J (1998) Development of new volatile organic compound (VOC) exposure metrics and their relationship to “sick building syndrome” symptoms. Indoor Air:140–152

    Google Scholar 

  • Thorn R, Greenman J (2012) Microbial volatile compounds in health and disease conditions. J Breath Res 6(2):024001. ISSN 1752-7155

    Article  PubMed  CAS  Google Scholar 

  • Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatol J 52(5):1836–1846

    Article  CAS  Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2010) Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum F.sp.cubenseRace4. Am J Agric Biol Sci 5:177–182

    Article  CAS  Google Scholar 

  • Tirranen LS, Gitelson II (2006) The role of volatile metabolites in microbial communities of the LSS higher plant link. Adv Space Res 38:1227–1232

    Article  CAS  Google Scholar 

  • Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1, 8- cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–914

    Article  CAS  PubMed  Google Scholar 

  • Tonkin-Crine S, Yardley L, Little P (2011) Antibiotic prescribing for acute respiratory tract infections in primary care: a systematic review and meta-ethnography. J Antimicrob Chemother 66:2215–2223

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, He Z, Van Nostrand JD, Albrigo G, Zhou J, Wang N (2011) Huanglongbing alters the structure and functionaldiversity of microbial communities associated with citrus rhizosphere. ISME J 6:363–383

    Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15:109–118

    Article  CAS  PubMed  Google Scholar 

  • Turner AP, Magan N (2004) Electronic noses and disease diagnostics. Nat Rev Microbiol 2(2):161–166

    Article  CAS  PubMed  Google Scholar 

  • Verginer M., Leitner E., Berg G (2010). Production of volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58:8344–8350 10.1021/jf100393w

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641. doi:10.1128/AEM.01078-07

  • Vining LC (1990) Functions of secondary metabolites. Annu Rev Microbiol 44:395–427

    Article  CAS  PubMed  Google Scholar 

  • Voigt CA, Schafer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42:364–375

    Article  CAS  PubMed  Google Scholar 

  • von Reuss S, Kai M, Piechulla B, Francke W (2010) Octamethylbicyclo[3.2.1] octadienes from Serratia odorifera. Angew Chem 122:2053–2054

    Article  Google Scholar 

  • Wady L, Bunte A, Pehrson C, Larsson L (2003) Use of gas chromatography -mass spectrometry/solid phase micro extraction for the identification of MVOCs from moldy building materials. J Microbiol Methods 52:325–332

    Article  CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani MA, Sanjana K, Kumar DM, Lal DK (2010) GC-MS analysis reveals production of 2-phenylethanol from Aspergillus niger endophytic in rose. J Basic Microbiol 50:110–114

    Article  CAS  PubMed  Google Scholar 

  • Watson AG, Ford EJ (1972) Soil fungistasis a reappraisal. Annu Rev Phytopathol 10:327

    Article  Google Scholar 

  • Weise T, Kai M, Gummesson A, Troeger A, vonReuss S, Piepenborn S (2012) Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85–10. Beilstein J Org Chem 8:579–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisskopf L (2013) The potential of bacterial volatiles for crop protection against phytophathogenic fungi. In Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, pp 1352–1363

    Google Scholar 

  • Weschler CJ (2000) Ozone in indoor environments: concentration and chemistry. Indoor Air 10(4):269–288

    Article  CAS  PubMed  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364

    Article  CAS  PubMed  Google Scholar 

  • Whillans FD, Lamont GS (1995) Fungal volatile metabolites released into indoor air environments: variation with fungal species and growth media. In: Morawska L, Bofinger ND, Maroni M (eds) Proceedings of the international workshop indoor air—an integrated approach, gold coast Australia, 1994. Elsevier Science and Technology Books, Oxford, pp 47–50

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Whiteson KL, Meinardi S, Lim YW, Schmieder R, Maughan H, Quinn R, Blake RD, Conrad D, Rohwer F (2014) Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2, 3-butanedione fermentation. ISME J 8:1247–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins K, Larsen K (1995) Variation of volatile organic compounds patterns of mold species from damp buildings. Chemosphere 31(5):3225–3236

    Article  CAS  Google Scholar 

  • Wilkins K, Scholl S (1989) Volatile metabolites of some barley storage molds. Int J Food Microbiol 8(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Wilkins K, Nielsen EM, Wolkoff P (1997) Patterns in volatile organic compounds in dust from moldy buildings. Indoor Air 7(2):128–134

    Article  CAS  Google Scholar 

  • Wilkins K, Larsen K, Simkus M (2000) Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 41:437–446

    Article  CAS  PubMed  Google Scholar 

  • Wilkins K, Larsen K, Simkus M (2003) Volatile metabolites from indoor molds grown on media containing wood constituents. Environ Sci Pollut Res Int 10(4):206–208

    Article  CAS  PubMed  Google Scholar 

  • Willger SD, Grahl N, Cramer RA (2008) Aspergillus fumigatus metabolism: clues to mechanisms of in vivo fungal growth and virulence. Med Mycol J 47:S72–S79

    Article  CAS  Google Scholar 

  • Wilson D (1995) Endophyte the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Wolkoff P, Clausen PA, Wilkins CK, Hougaard KS, Nielsen GD (1999) Formation of strong airway irritants in a model mixture of (+)-alpha-pinene/ozone. Atmos Environ 33(5):693–698

    Article  CAS  Google Scholar 

  • Wolkoff P, Clausen PA, Wilkins CK, Nielsen GD (2000) Formation of strong airway irritants in terpene/ozone mixtures. Indoor Air 10(2):82–91

    Article  CAS  PubMed  Google Scholar 

  • Worapong J, Strobel GA, Ford EJ, Li JY, Baird G, Hess WM (2001) Muscodor albus anam. nov., an endophyte from Cinnamomum zeylanicum. Mycotaxon 79:67–79

    Google Scholar 

  • World Health Organization (WHO) (1986) Indoor air quality and research. Euro Reports and Studies 103

    Google Scholar 

  • Xu C, Mo M, Zhang L, Zhang K (2004) Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol Biochem 36:1997–2004

    Article  CAS  Google Scholar 

  • Yuan Zl, Zhang Cl, Lin FC (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    Article  CAS  Google Scholar 

  • Zhang H, Xie X, Kim M, Kornyeyev M, Holaday S, Pare PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M, Yuan ZL, Lin FC, Druzhinina IS, Kubicek CP (2010) Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol J 114:797–808

    Article  CAS  Google Scholar 

  • Zhang J, Fang A, Wang B, Kim SH, Bogdanov B, Zhou Z (2011) I match: a retention index tool for analysis of gas chromatography-mass spectrometry data. J Chromatogr A 1218:6522–6530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379. doi:10.1016/j.soilbio.2007.04.009

Download references

Acknowledgment

Sincere thankful for Katerina Peros for her continuous support. Additionally R. Selim would like to acknowledge her kids for their backing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaled A. Selim or Mohamed I. Abdelwahab Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Selim, K.A., El Ghwas, D.E., Selim, R.M., Abdelwahab Hassan, M.I. (2017). Microbial Volatile in Defense. In: Choudhary, D., Sharma, A., Agarwal, P., Varma, A., Tuteja, N. (eds) Volatiles and Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9_8

Download citation

Publish with us

Policies and ethics