Skip to main content

Plant Volatile Compounds in Growth

  • Chapter
  • First Online:
Volatiles and Food Security

Abstract

Plants synthesise volatile organic compounds (VOCs) in various tissues against stresses regarding herbivores, plant viruses, pathogens, temperature, humidity, light ozone, food usability, etc., and for physiologic processes such as plant development, seed formation and germination, pollination and fruit ripening. These compounds are synthesised in all parts of plants, especially flowers, fruits, roots, xylems and cells, and just as they may be effective in the tissues they are produced, they may be transferred to other parts of the plants and show their effect there.

Plants communicate with living things around them by emitting numerous different volatile compounds. They develop morphological and physiological defence mechanisms by repulsing or attracting their enemies with these compounds. Plants store these compounds produced for defence and release them in the form of volatile gases when needed. Plant volatile compounds include isoprene, terpene, fatty acid derivatives, alcohols, esters, volatile oils, plant development regulators (abscisic acid, auxin, cytokinin, etc.), phenolic compounds and secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altındal D, Altındal N (2011) The effects of sage volatile oil (Salvia officinalis) and Turkish oregano volatile oil (Origanum onites) on stored cowpea (Vigna sinensis L.) seed. J Med Plants Res 5(20):5017–5020

    Google Scholar 

  • Altındal N, Altındal D (2013) Allelopathic effect of sage and Turkish oregano volatile oils on in vitro in sainfoin (Onobrychis viciifolia). J. Essent Oil Bearing Plants 16(3):328–333. doi:10.1080/0972060X.2013.764180

    Article  Google Scholar 

  • Beaulieu JC, Grimm CC (2001) Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. J Agric Food Chem 49:1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Büchel K, Fenning T, Gershenzon J, Hilker M, Meiners T (2015) Elm defence against herbivores and pathogens: morphological, chemical and molecular regulation aspects. Phytochem Rev. http://link.springer.com/article/10.1007/s11101-015-9442-0#/page-1. Accessed 21 May 2016

  • Byers KJRP, Bradshaw HD Jr, Riffell JA et al (2014) Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus). J Exp Biol 217:614–623. doi:10.1242/jeb.092213

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang E-H, Jeong S-M, Hur Y-Y, Koh S-W, Choi I-M et al (2015) Changes of volatile compounds in Vitis labrusca ‘Doonuri’ grapes during stages of fruit development and in wine. Hortic Environ Biotechnol 56(2):137–144. doi:10.1007/s13580-015-0068-3

    Article  CAS  Google Scholar 

  • Degenkolb T, Vilcinskas A (2016) Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl Microbiol Biotechnol 100:3799–3812. doi:10.1007/s00253-015-7233-6

    Article  CAS  PubMed  Google Scholar 

  • Dong F, Fu X, Watanabe N, Su X, Yang Z et al (2016) Recent advances in the emission and functions of plant vegetative volatiles. Molecules 21:124. doi:10.3390/molecules21020124

    Article  PubMed  Google Scholar 

  • Farre-Armengol G, Filella I, Llusia J, Penuelas J et al (2015) Pollination mode determines floral scent. Biochem Syst Ecol 61:44–53

    Article  CAS  Google Scholar 

  • Fiers M, Lognay G, Fauconnier M-L, Jijakli MH et al (2013) Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS One 8(6):1–18. doi:10.1371/journal.pone.0066805

    Article  Google Scholar 

  • Gómez MD, Vera-Sirera F, Pérez-Amador MA, et al (2014) Molecular programme of senescence in dry and fleshy fruits. J Exp Bot. http://jxb.oxfordjournals.org/. Accessed Apr 19 2016

  • Hamza AF, El-Orabi MN, Gharieb OH, El-Saeady A-HA, Hussein A-RE et al (2016) Response of Sitophilus granarius L. to fumigant toxicity of some plant volatile oils. J Radiat Res Appl Sci 9:8–14

    Article  CAS  Google Scholar 

  • Huang X-Z, Chen J-Y, Xiao H-J, Xiao Y-T, Wu J, Wu J-X, Zhou J-J, Zhang Y-J, Guo Y-Y et al (2015) Dynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera. Sci Rep 5:11867. doi:10.1038/srep11867

    Article  PubMed  PubMed Central  Google Scholar 

  • Ja-Eun S, Jeong-Moon K, Na-Hyun L, Ji-Yeon Y, Hoi-Seon L et al (2016) Acaricidal and insecticidal activities of essential oils against a stored-food mite and stored-grain insects. J Food Protect 1:4–178. doi: http://dx.doi.org/10.4315/0362-028X.JFP-15-109

    Google Scholar 

  • Kant MR, Bleeker PM, Van Wisk M, Schuurink RC, Haring MA, et al (2009) Plant volatiles in defence. In: Van Loon LC (ed) Advances in botanical research. Plant innate immunity: Elsevier Science, pp 614–651

    Google Scholar 

  • Kim J-Y, Lee J-S, Kwon T-R, Lee S-I, Kima J-A, Leea G-M, Parka S-C, Jeonga M-J et al (2015) Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes. Postharvest Biol Technol 110:43–50

    Article  CAS  Google Scholar 

  • Laznik Ž, Trdan S (2016) The role of volatile substances emitted by cultivated plant’s roots in ındirect defense against soil herbivores. Insecticides Resist Intech, p 393–419

    Google Scholar 

  • Li W, Yamaguchi S, Khan MA, An P, Liu X, Tran L-SP et al (2016) Roles of gibberellins and abscisic acid in regulating germination of Suaeda salsa dimorphic seeds under salt stress. Front Plant Sci 6. doi:10.3389/fpls.2015.01235

  • Louis J, Basu S, Varsani S, Castano-Duque L, Jiang V, Williams WP, Felton GW, Luthe DS et al (2015) Ethylene contributes to maize insect resistance1-mediated maize defense against the phloem sap-sucking corn leaf aphid. Plant Physiol 169:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Hidalgo P, García JM, Pozo MJ et al (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:1–11

    Article  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S et al (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Öz H. Doğal sinek kovucular (2013) http://www.Labmedya.com. Accessed 29 May 2016

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against ınsect herbivores. Plant Physiol 121:325–331

    Article  PubMed  PubMed Central  Google Scholar 

  • Peter KV (2012) Handbook of herbs and spices, 2nd ed, vol 2. Woodheat Publishing Limited, p 583

    Google Scholar 

  • Piesik D, Lemnczykb G, Skoczekc A, Lamparskia R, Bocianowski J, Kotwica K, Delaney KJ et al (2011) Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. J Plant Physiol 168:1534–1542. doi:10.1016/j.jplph.2011.01.032

    Article  CAS  PubMed  Google Scholar 

  • Procko C, Crenshaw CM, Ljung K, Noel JP, Chory J et al (2014) Cotyledon-generated auxin ıs required for shade-ınduced hypocotyl growth in brassica rapa. Plant Physiol 165:1285–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J, Adame-Alvarez RM, Acosta-Gallegos JA, Heil M et al (2015) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103:250–260. doi:10.1111/1365-2745.12340

    Article  CAS  Google Scholar 

  • Ramírez-López CB, García-Sánchez E, Martínez-Muñoz RE, Del Río RE, Martínez-Pacheco MM et al (2016) Chemical composition of the essential oil from Ageratina jocotepecana and its repellent effect on Drywood termite Incisitermes marginipennis. Bol Latinoam Caribb Plantas Medicinales Aromáticas 15(1):53–60

    Google Scholar 

  • Randriamanana TR, Lavola A, Julkunen-Tiitto R et al (2015) Interactive effects of supplemental UV-B and temperature in European aspen seedlings: implications for growth, leaf traits, phenolic defense and associated organisms. Plant Physiol Biochem 93:84–93

    Article  CAS  PubMed  Google Scholar 

  • Reisenman CE, Riffell JA (2015) The neural bases of host plant selection in a neuroecology frame work. Front Physiol 6:229. doi:10.3389/fphys.2015.00229

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy A, Das S (2015) Molecular mechanism underlying the Entomotoxic effect of Colocasia esculenta Tuber agglutinin against Dysdercus cingulatus. Insects 6:827–846. doi:10.3390/insects6040827

    Article  PubMed Central  Google Scholar 

  • Shahab-Ghayoor H, Saeidi K (2015) Antifeedant activities of essential oils of Satureja hortensis and Fumaria parviflora against Indian meal moth Plodia interpunctella Hṻbner (Lepidoptera: Pyralidae). Entomol Ornithol Herpetol 4:154. doi:10.4172/2161-0983.1000154

    Google Scholar 

  • Shulaev V, Silverman P, Raskin I et al (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721. doi:10.1038/385718a0

    Article  CAS  Google Scholar 

  • Tunaz H, Er MK, Işıkber AA et al (2009) Fumigant toxicity of plant essential oils and selected Monoterpenoid components against the adult German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae). Turk J Agric For 33:211–217. doi:10.3906/tar-0805-22

    CAS  Google Scholar 

  • Wang Q, Eneji AE, Kong X, Wang K, Dong H et al (2015) Salt stress effects on secondary metabolites of cotton in relation to gene expression responsible for aphid development. PLoS ONE 10(6):1–14. doi:10.1371/journal.pone.0129541

    Google Scholar 

  • Yaşar S (2005) Determination of fixed and essential oil contents and soil characteristic of some perennial medical plants that grow naturally ın the campus of Çukurova University. Department of biology institute of natural and applied sciences university of Çukurova, MSc Thesis, pp 1–51

    Google Scholar 

  • Zadeh SY, Ramin AA, Baninasab B et al (2015) Effect of gibberellic acid, stratification and salinity on seed germination of Echinacea purpurea cv. Magnus Herba Pol 61(3):13–22. doi:10.1515/hepo-2015-0019

    Google Scholar 

  • Zhang D-W, Deng X-G, Fu F-Q, Lin H-H et al (2015) Induction of plant virus defense response by brassinosteroids and brassinosteroid signaling in Arabidopsis thaliana. Planta 241:875–885. doi:10.1007/s00425-014-2218-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Altındal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Altındal, D., Altındal, N. (2017). Plant Volatile Compounds in Growth. In: Choudhary, D., Sharma, A., Agarwal, P., Varma, A., Tuteja, N. (eds) Volatiles and Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9_1

Download citation

Publish with us

Policies and ethics