Skip to main content

Bacterial Volatiles for Plant Growth

  • Chapter
  • First Online:
Volatiles and Food Security
  • 833 Accesses

Abstract

The rhizosphere is defined as the zone of soil surrounding the plant roots. Plant roots secrete a variety of plant exudates rich in nutrients resulting in accumulation of more bacteria in the rhizosphere region, generally 10–100 times higher than in the bulk soil. The bacteria colonizing this rhizosphere region are called as rhizobacteria, and those which help in promoting the growth of plants are called as plant growth-promoting rhizobacteria (PGPR). Currently, many biological approaches have gained importance for improving the crop production. One of the approaches includes using microbes as bioinoculants to promote growth and development of plants. Many rhizobacteria are presently being used as bioinoculants. They possess different mechanisms to enhance the plant growth such as nitrogen fixation, phosphate solubilization, production of siderophores, production of 1-aminocyclopropane-1-carboxylate deaminase (ACC), phytohormone production exhibiting antifungal activity, quorum sensing (QS) signal interference, induction of systemic resistance, interference with pathogen toxin production, and production of volatile organic compounds (VOCs). The production of VOCs by microorganisms can be considered as a novel characteristic property of PGPR in promoting the plant growth. The chemicals produced by microorganisms like bacteria and fungi as a part of their metabolism are called as microbial volatile organic compounds (MVOCs). These can modulate the physiology of plants and microorganisms and thus can provide an alternative method to use of chemicals in protecting plants from pathogens and increasing crop yield. MVOCs can be considered as ecofriendly and cost-effective strategy for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. IIOAB J 3:39–46

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2009) Effect of insecticide-tolerant and plant growth promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12:213–222

    Article  Google Scholar 

  • Ahemad M, Khan MS (2012a) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2012b) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emirates J Food Agric 24:334–343

    Google Scholar 

  • Ahemad M, Khan MS (2012c) Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann Microbiol 62:1531–1540

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahemad M, Malik A (2011) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2:12–21

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Barbieri E, Gioacchini AM, Zambonelli A, Bertini L, Stocchi V (2005) Determination of microbial volatile organic compounds from Staphylococcus pasteuri against tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rap Comm Mass Spectrom 19:3411–3415

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Aguilar CA (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Beattie SE, Torrey GS (1986) Toxicity of methanethiol produced by Brevibacterium linens toward Penicillium expansum. J Agr Food Sci 34:102–104

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR et al (2011a) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Blom D, Fabbri C, Eberl L, Weisskopf L (2011b) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl Environ Microb 77:1000–1008

    Article  CAS  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    Article  PubMed  CAS  Google Scholar 

  • Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Tech 19:275–283

    Article  CAS  Google Scholar 

  • Chen H, Xiao X, Wang J, Wu LJ, Zheng ZM et al (2008) Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnol Lett 30:919–923

    Article  PubMed  CAS  Google Scholar 

  • Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J et al (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3:698–704

    Article  CAS  PubMed  Google Scholar 

  • Chung EJ, Park JH, Park TS, Ahn JW, Chung YR (2010) Production of a phytotoxic compound, 3-phenylpropionic acid by a bacterial endophyte, Arthrobacter humicola YC6002 isolated from the root of Zoysia japonica. Plant Pathol J 26:245–252

    Article  CAS  Google Scholar 

  • Claeson AS, Levin JO, Blomquist G, Sunesson AL (2002) Volatile metabolites from microorganisms grown on humid building materials and synthetic media. J Environ Monit 4:667–672

    Article  CAS  PubMed  Google Scholar 

  • Cortes-Barco AM, Goodwin PH, Hsiang T (2010a) Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59:643–653

    Article  CAS  Google Scholar 

  • Cortes-Barco AM, Hsiang T, Goodwin PH (2010b) Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann Appl Biol 157:179–189

    Article  CAS  Google Scholar 

  • D’Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D et al (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826

    Article  PubMed  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  CAS  PubMed  Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Elshafie HS, Camele I, Racioppi R, Scrano L, Iacobellis NS et al (2012) In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. Int J Mol Sci 13:16291–16302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezquer I, Li J, Ovecka M, Baroja-Fernandez E, Jose Munoz F et al (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants. Plant Cell Physiol 51:1674–1693

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  CAS  PubMed  Google Scholar 

  • Fiedler K, Schutz E, Geh S (2001) Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204:111–121

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2011) Plant growth promoting rhizobacteria:fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting Bacteria. Springer-Verlag, Berlin, pp 21–42

    Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, De Boer W (2014a) Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol 5:289

    Article  PubMed  PubMed Central  Google Scholar 

  • Garbeva P, Hordijk C, Gerards S, De Boer W (2014b) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87:639–649

    Article  CAS  PubMed  Google Scholar 

  • GlareT CJ, Gelernter W, Jackson T, Keyhani N et al (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting Bacteria: mechanisms and applications. Hindawi Publ Corp Sci 2012:1–15

    Google Scholar 

  • Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L et al (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906

    Article  CAS  PubMed  Google Scholar 

  • Han SH, Lee SJ, Moon JH, Park KH, Yang KY et al (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant Mol Plant Microb Inter 19:924–930

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hynes RK, Leung GC, Hirkala DL, Nelson LM (2008) Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in Western Canada. Can J Microbiol 54:248–258

    Article  CAS  PubMed  Google Scholar 

  • Jahanian A, Chaichi MR, Rezaei K, Rezayazdi K, Khavazi K (2012) The effect of plant growth promoting rhizobacteria (pgpr) on germination and primary growth of artichoke (Cynara scolymus). Int J Agric Crop Sci 4:923–929

    Google Scholar 

  • Joo GJ, Kin YM, Kim JT, Rhee IK, Kim JH et al (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Google Scholar 

  • Kai M, Vespermann A, Piechulla B (2008) The growth of fungi and Arabidopsis thaliana is influenced by bacterial volatiles. Plant Signal Behav 3:482–484

    Article  PubMed  PubMed Central  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B et al (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Crespo E, Cristescu S, Harren F, Francke W et al (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6(151):1–23

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1981) Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024

    Article  Google Scholar 

  • Kloepper JW, Zablotowick RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 315–326

    Google Scholar 

  • Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  • Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467:82–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G et al (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang H, Zhang X, Jun RAO, Huanwen CHEN (2008) Microbial volatile organic compounds: generation pathways and mass spectrometric detection. J Chin Biotechnol 28:124–133

    Google Scholar 

  • Maffei M (2010) Sites of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76:612–631

    Article  CAS  Google Scholar 

  • Maffei ME, Gertsch J, Appendino G (2011) Plant volatiles: production, function and pharmacology. Nat Prod Rep 28:1359–1380

    Article  CAS  PubMed  Google Scholar 

  • Matysik S, Herbarth O, Mueller A (2008) Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J Microbiol Methods 75:182–187

    Article  CAS  PubMed  Google Scholar 

  • MaY RM, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wuensche H et al (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp. B55 promotes nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83

    Article  Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE et al (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    Article  Google Scholar 

  • Orlandini V, Maida I, Fondi M, Perrin E, Papaleo MC et al (2014) Genomic analysis of three sponge-associatedArthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiol Res 169:593–601

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Martinez-Trujillo M, Lopez-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo HA, Ias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Sign Behav 4:701–712

    Article  CAS  Google Scholar 

  • Papaleo MC, Fondi M, Maida I, Perrin E, Lo Giudice A et al (2012) Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnol Adv 30:272–293

    Article  CAS  PubMed  Google Scholar 

  • Papaleo MC, Romoli R, Bartolucci G, Maida I, Perrin E et al (2013) Bioactive volatile organic compounds from Antarctic (sponges) bacteria. New Biotechnol 30:824–838

    Article  CAS  Google Scholar 

  • Penuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M et al (2014) Biogenic volatile emissions from the soil. Plant Cell Environ 37:1866–1891

    Article  CAS  PubMed  Google Scholar 

  • Piechulla B, Degenhardt J (2014) The emerging importance of microbial volatile organic compounds. Plant Cell Environ 37:811–812

    Article  CAS  PubMed  Google Scholar 

  • Popova AA, Koksharova OA, Lipasova VA, Zaitseva JV, Katkova-Zhukotskaya OA et al (2014) Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms,Caenorhabditis elegans, and Drosophila melanogaster. Biomed Res Int 2014:11

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP (2008) Cyanogenic pseudomonads influence multitrophic interactions in the rhizosphere. PLoS One 3(4):e2073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S et al (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC (2013) Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14:17781–17811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Song GC, Ryu CM (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sunesson AL, Vaes WHJ, Nilsson CA, Blomquist GR, Andersson B et al (1995) Identification of volatile metabolites from five fungal species cultivated on two media. Appl Environ Microbiol 61:2911–2918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J, Perez-Rueda E (2013) Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4:236–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian F, Ding Y, Zhu H, Yao L, Du B (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz J Microbiol 40:276–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Tirranen LS, Gitelson II (2006) The role of volatile metabolites in microbial communities of the LSS higher plant link. Adv Space Res 38:1227–1232

    Article  CAS  Google Scholar 

  • Verginer M, Leitner E, Berg G (2010) Production of volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58:8344–8350

    Article  CAS  PubMed  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microb 73:5639–5641

    Article  CAS  Google Scholar 

  • Von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E et al (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan MG, Li GQ, Zhang JB, Jiang D, Huang HC (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol Control 46:552–559

    Article  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Weise T, Kai M, Gummesson A, Troeger A, von Reuss S et al (2012) Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85–10. Beilstein J Org Chem 8:579–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weise T, Kai M, Piechulla B (2013) Bacterial ammonia causes significant plant growth inhibition. PLoS One 8:e63538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  CAS  PubMed  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 81:357–364

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li B, Wang Y, Guo Q, Lu X et al (2013) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97:9525–9534

    Article  CAS  PubMed  Google Scholar 

  • Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreedevi Sarsan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sarsan, S. (2017). Bacterial Volatiles for Plant Growth. In: Choudhary, D., Sharma, A., Agarwal, P., Varma, A., Tuteja, N. (eds) Volatiles and Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9_18

Download citation

Publish with us

Policies and ethics