Skip to main content

Fungal Volatile Organic Compounds: Emphasis on Their Plant Growth-Promoting

  • Chapter
  • First Online:

Abstract

Fungal volatile organic compounds (VOCs) commonly formed bioactive interface between plants and countless of microorganisms on the above- and below-ground plant–fungus interactions. Fungal–plant interactions symbolize intriguingly biochemical complex and challenging scenarios that are discovered by metabolomic approaches. Remarkably secondary metabolites (SMs) played a significant role in the virulence and existence with plant–fungal pathogen interaction; only 25% of the fungal gene clusters have been functionally identified, even though these numbers are too low as compared with plant secondary metabolites. The current insights on fungal VOCs are conducted under lab environments and to apply small numbers of microbes; its molecules have significant effects on growth, development, and defense system of plants. Many fungal VOCs supported dynamic processes, leading to countless interactions between plants, antagonists, and mutualistic symbionts. The fundamental role of fungal VOCs at field level is required for better understanding, so more studies will offer further constructive scientific evidences that can show the cost-effectiveness of ecofriendly and ecologically produced fungal VOCs for crop welfare.

This is a preview of subscription content, log in via an institution.

References

  • Abels FB, Morgan PW, Saltveit ME (1992) Ethylene in plant Biology. Academic, New York

    Google Scholar 

  • Aime MC, Phillips-Mora W (2005) The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97:1012–1022

    CAS  PubMed  Google Scholar 

  • Arshad M, Frankenberger WTJ (1992) Microbial production of plant growth regulators. In: Metting FBJ (ed) Soil microbial ecology. Marcel Dekker, New York, pp 307–347

    Google Scholar 

  • Auvin-Guette C, Rebuffat S, Prigent Y, Bodo B (1992) Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J Am Chem Soc 114:2170–2174

    Article  CAS  Google Scholar 

  • Auvin-Guette C, Rebuffat S, Vuidepot I, Massias M, Bodo B (1993) Structural elucidation of trikoningins KA and KB, peptaibols from Trichoderma koningii. J Chem Soc Perkin Trans 1:249–255

    Article  Google Scholar 

  • Baker SE, Perrone G, Richardson NM, Gallo A, Kubicek CP (2012) Phylogenetic analysis of polyketide synthase-encoding genes in Trichoderma. Microbiology 158:35–45

    Article  CAS  Google Scholar 

  • Barea JM, Brown ME (1974) Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J Appl Microbiol 37(4):583–593

    CAS  Google Scholar 

  • Benítez T, Delgado-Jarana J, Rey M, Limón J (1998) Biofungicides: Trichoderma as biocontrol agent against phytopathogenic fungi. In: Pandalia SG (ed) Recent research developments in microbiology, vol 2. Research Signpost, Trivandrum, pp 129–150

    Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins Clin Microbiol Rev 16:497–516

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Grigoriev PA, Degenkolb T, Neuhof A, Haertl A, Schlegel B, Graefe U (2003) Isolation, structure elucidation and biological activities of trichofumins A, B, C and D, new 11 and 13mer peptaibols from Trichoderma sp. HKI 0276. J Pept Sci 9:810–816

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Wangun HVK, Nkengfack AE, Schlegel B (2004) Lignoren, a new sesquiterpenoid metabolite from Trichoderma lignorum HKI 0257. J Basic Microbiol 44:317–319

    Article  CAS  PubMed  Google Scholar 

  • Blake PS, Browning G, Benjamin LJ, Mander LN (2000) Gibberellins in seedlings and flowering trees of Prunus avium L. Phytochemistry 53(4):519–528

    Article  CAS  PubMed  Google Scholar 

  • Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH (2004) A putative polyketide synthase/peptide synthase from Magnaporthe grisea signals pathogen attack to resistance rice. Plant Cell 16:2499–2513

    Article  PubMed  PubMed Central  Google Scholar 

  • Brewer D, Mason FG, Taylor A (1987) The production of alamethicins by. Trichoderma spp Can J Microbiol 33:619–625

    Article  CAS  PubMed  Google Scholar 

  • Brian PW (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667–668

    Article  CAS  Google Scholar 

  • Brotman Y, Kapuganti JG, Viterbo A (2010) Trichoderma Curr Biol 20(9):R390–R391

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Dyer RB, McCormick SP, Kendra DF, Plattner RD (2004) Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol 41:454–462

    Article  CAS  PubMed  Google Scholar 

  • Brückner H, Koza A (2003) Solution phase synthesis of the 14-residue peptaibol antibiotic trichovirin I. Amino Acids 24:311–323

    Article  PubMed  CAS  Google Scholar 

  • Bruinsma M, Pang B, Mumm R, van Loon JJA, Dicke M (2009) Comparing induction at an early and late step in signal transduction mediating indirect defence in Brassica oleracea. J Exp Bot 60:2589–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoza RE, Vizcaíno JA, Hermosa MR, Sousa S, González FJ, Llobell A, Monte E, Gutiérrez S (2006) Cloning and characterization of the erg1 gene of Trichoderma harzianum effect of the erg1silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genet Biol 43:164–178

    Article  CAS  PubMed  Google Scholar 

  • Cardoza RE, Hermosa MR, Vizcaíno JA, González FJ, Llobell A, Monte E, Gutiérrez S (2007) Partial silencing of a hydroxy-methylglutaryl-CoA reductase encoding gene in Trichoderma harzianum CECT 2413 results in a lower level of resistance to lovastatin and a lower antifungal activity. Fungal Genet Biol 44:269–283

    Article  CAS  PubMed  Google Scholar 

  • Cardoza RE, Malmierca MG, Hermosa R, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutiérrez S (2011) Identification of loci and functional characterization of trichothecene biosynthetic genes in the filamentous fungus Trichoderma. Appl Environ Microbiol 77:4867–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caron M, Patten CL, Ghosh S (1995) Effects of plant growth promoting rhizobacteria Psuedomonas putida GR-122 on the physiology of canolla roots. Proc Plant Growth Reg Soc Am 7:18–20

    Google Scholar 

  • Chang MC, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineering isoprenoids. Nat Chem Biol 2:674–681

    Article  CAS  PubMed  Google Scholar 

  • Chiang YM, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CC (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtha-γ-pyrone. Fungal Genet Biol 48:430–437

    Article  CAS  PubMed  Google Scholar 

  • Cho IH, Namgung H-J, Choi H-K, Kim YS (2008) Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing). Food Chem 106:71e76

    Article  CAS  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans Br Mycol Soc 88:503–513

    Article  CAS  Google Scholar 

  • Coleman JJ, Ghosh S, Okoli I, Mylonakis E (2011) Antifungal activity of microbial secondary metabolites. PLoS One 6:e25321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collemare J, Pianfetti M, Houlle AE, Morin D, Camborde L, Gagey MJ, Barbisan C, Fudal I, Lebrun MH, Böhnert HU (2008) Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytol 179:196–208

    Article  CAS  PubMed  Google Scholar 

  • Collins RP, Halim AF (1972) Characterization of the major aroma constituent of the fungus Trichoderma viride. J Agric Food Chem 20:437–438

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daoubi M, Pinedo-Rivilla C, Rubio MB, Hermosa R, Monte E, Aleu J, Collado IG (2009) Hemisynthesis and absolute configuration of novel 6-pentyl-2H-pyran-2-one derivatives from Trichoderma spp. Tetrahedron 65:4834–4840

    Article  CAS  Google Scholar 

  • Davis C, Carberry S, Schrettl M, Singh I, Stephens JC, Barry SM, Kavanagh K, Challis GL, Brougham D, Doyle S (2011) The role of S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus. Chem Biol 18:542–552

    Article  CAS  PubMed  Google Scholar 

  • Degenkolb T, Gräfenhan T, Berg A, Nirenberg HI, Gams W, Brückner H (2006a) Peptaibiomics: screening for polypeptide antibiotics (peptaibiotics) from plant-protective Trichoderma species. Chem Biodivers 3:593–610

    Article  CAS  PubMed  Google Scholar 

  • Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H (2006b) Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Food Chem 54:7047–7061

    Article  CAS  PubMed  Google Scholar 

  • Degenkolb T, Dieckmann R, Nielsen KF, Gräfenhan T, Theis C, Zafari H, Chaverri P, Ismaiel A, Brückner H, von Döhren H, Thrane U, Petrini O, Samuels GJ (2008a) The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 7:177–219

    Article  Google Scholar 

  • Degenkolb T, von Döhren H, Nielsen KF, Samuels GJ, Brückner H (2008b) Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodivers 5:671–680

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  • Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960

    Article  CAS  PubMed  Google Scholar 

  • Fox EM, Howlett B (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    Article  CAS  PubMed  Google Scholar 

  • Fraatz MA, Zorn H (2010) Fungal flavours. In: Hofrichter M (ed) The Mycota X: industrial applications, 2nd edn. Springer-Verlag, Berlin, p 249e264

    Google Scholar 

  • Frandsen RJ, Schütt C, Lund BW, Staerk D, Nielsen L, Olsson S, Giese H (2011) Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J Biol Chem 286:10419–10428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita T, Wada S, Iida A, Nishimura T, Kanai M, Toyama N (1994) Fungal metabolites. XIII. Isolation and structural elucidation of new peptaibols, trichodecenins-I and -II, from Trichoderma viride. Chem Pharm Bull 42:489–494

    Article  CAS  PubMed  Google Scholar 

  • Gardiner DM, Howlett BJ (2005) Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiol Lett 248:241–248

    Article  CAS  PubMed  Google Scholar 

  • Ghisalberti EL, Hockless DCR, Rowland C, White AH (1992) Harziandione, a new class of diterpene from Trichoderma harzianum. J Nat Prod 55:1690–1694

    Article  CAS  Google Scholar 

  • Glick BR, Liu CP, Ghosh S, Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29(8):1233–1239

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39(8):1968–1977

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 84:377–393

    Google Scholar 

  • Hermosal R, Cardoza RE, Rubiol MB, Gutiérrez S, Monte E (2014) Secondary metabolism and antimicrobial metabolites of trichoderma. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of trichoderma, pp 125–137

    Google Scholar 

  • Hill RA, Cutler HG, Parker SR, (1995) Trichoderma and metabolites as control agents for microbial plant diseases. PCT Patent Appl 9520879

    Google Scholar 

  • Howell CR (2006) Understanding the mechanisms employed by Trichoderma virens to affect biological control of cotton diseases. Phytopathology 96:178–180

    Article  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD, Lumsden R (1993) Antibiotic production by strains of Gliocladium virens and its relation to biocontrol of cotton seedling diseases. Biocontrol Sci Tech 3:435–441

    Article  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    Article  CAS  Google Scholar 

  • Keszler A, Forgacs E, Kotai L, Vizcaíno JA, Monte E, García-Acha I (2000) Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr Sci 38:421–424

    Article  CAS  PubMed  Google Scholar 

  • Khosla C (2009) Structures and mechanisms of polyketide synthases. J Org Chem 74:6416–6420

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  • Komon-Zelazowska M, Neuhof T, Dieckmann R, von Döhren H, Herrera-Estrella A, Kubicek CP (2007) Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot Cell 6:2332–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martínez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, May GS, Lionakis MS, Lewis RE, Kontoyiannis DP (2004) Extra copies of the Aspergillus fumigatus squalene epoxidase gene confer resistance to terbinafine: genetic approach to studying gene dose-dependent resistance to antifungals in A. fumigatus. Antimicrob. Agents Chemother 48:2490–2496

    Article  CAS  Google Scholar 

  • Lorito M, Farkas V, Rebuffat S, Bodo B, Kubicek CP (1996) Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J Bacteriol 178:6382–6385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddau L, Cabras A, Franceschini A, Linaldeddu BT, Crobu S, Roggio T, Pagnozzi D (2009) Occurrence and characterization of peptaibols from Trichoderma citrinoviride, an endophytic fungus of cork oak, using electrospray ionization quadrupole time-of-flight mass spectrometry. Microbiology 155:3371–3381

    Article  CAS  PubMed  Google Scholar 

  • Maischak H, Zimmermann MR, Felle HH, Boland W, Mithöfer A (2010) Alamethicin-induced electrical long distance signaling in plants. Plant Signal Behav 5:988–990

    Article  PubMed  PubMed Central  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R, Monte E, Gutiérrez S (2012) Involvement of Trichoderma Trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol 78:4856–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Medina A, Roldan A, Albacete A, Perez-Alfocea F, Pascual JA, 2011 Hormonal signalling of the Trichoderma harzianum-induced resistance to Fusarium oxysporum and growth promotion effect in melon plants. In: Pascual JA, Perez Alfocea F (eds) Acta Horticulturae, pp 61–67

    Google Scholar 

  • Meyer CE, Reusser F (1967) A polypeptide antibacterial agent from Trichoderma viride. Experientia 23:85–86

    Article  CAS  PubMed  Google Scholar 

  • Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26(2):73–83

    Article  Google Scholar 

  • Morey P, Wortham A, Weber A, Horner E, Black M, Muller W (1997) Microbial VOCs in moisture damaged buildings. Healthy Build 1:245–250

    Google Scholar 

  • Mukherjee PK, Kenerley C (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein Vel1. Appl Environ Microbiol 76:2345–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee M, Horwitz BA, Sherkhane PD, Hadar R, Mukherjee PK (2006) A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet 50:193–202

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Wiest A, Ruíz N, Keightley A, Morán-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012a) Secondary metabolism in Trichoderma—a genomic perspective. Microbiology 158:35–45

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Buensanteai N, Morán-Diez ME, Druzhinina I, Kenerley CM (2012b) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158:155–165

    Article  CAS  PubMed  Google Scholar 

  • Neuhof T, Dieckmann R, Druzhinina I, Kubicek CP, von Döhren H (2007) Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma: can molecular phylogenic knowledge predict peptaibol structures? Microbiology 153:3417–3437

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo H, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagans E, Font X, Sanchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater 131:179e186

    Google Scholar 

  • Perez-Nadales E, Almeida Nogueira MF, Baldin C, Castanheira S, El Ghalid M, Grund E et al (2014) Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 70:42–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJW, Voesenek LACJ (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11(4):176–183

    Article  CAS  PubMed  Google Scholar 

  • Poole PR, Ward BG, Whitaker G (1998) The effects of topical treatments with 6-pentyl-2-pyrone and structural analogs on stem end post-harvest rots in kiwi fruit due to Botrytis Cinerea. J Agric Food Chem 77:81–86

    Article  CAS  Google Scholar 

  • Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR Jr, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663

    Article  CAS  PubMed  Google Scholar 

  • Rebuffat S, Goulard C, Bodo B (1995) Antibiotic peptides from Trichoderma harzianum: harzianins HC, proline-rich 14-residue peptaibols. J Chem Soc Perkin Trans 1:1849–1855

    Article  Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  • Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760

    Article  CAS  PubMed  Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rippa S, Eid M, Formaggio F, Toniolo C, Beven L (2010) Hypersensitive-like response to the pore-former peptaibol alamethicin in Arabidopsis thaliana. Chembiochem 11:2042–2049

    Article  CAS  PubMed  Google Scholar 

  • Rubio MB, Hermosa R, Reino JL, Collado IG, Monte E (2009) Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet Biol 46:17–27

    Article  CAS  PubMed  Google Scholar 

  • Rynkiewicz MJ, Cane DE, Christianson DW (2001) Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci U S A 98:13543–13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  • Samuels GJ, Pardo-Schultheiss R, Hebbar KP, Lumsden RD, Bastos CN, Costa JCB, Bezerra JL (2000) Trichoderma stromaticum sp. nov. A parasite of the cacao witches broom pathogen. Mycol Res 104:760–764

    Article  Google Scholar 

  • Sang Y, Blecha F (2008) Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev 9:227–235

    Article  PubMed  Google Scholar 

  • Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209

    Article  CAS  Google Scholar 

  • Scharf DH, Heinekamp T, Brakhage AA (2014) Human and plant fungal pathogens: the role of secondary metabolites. PLoS Pathog 10:e1003859. doi:10.1371/journal.ppat.1003859

  • Schirmböck M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    PubMed  PubMed Central  Google Scholar 

  • Schrettl M, Carberry S, Kavanagh K, Haas H, Jones GW, O’Brien J, Nolan A, Stephens J, Fenelon O, Doyle S (2010) Self-protection against gliotoxin—a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathog 6:e1000952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158:166–175

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastoury F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Siddiquee S, Yusuf UK, Hossain K, Jahan S (2009) In vitro studies on the potential Trichoderma harzianum for antagonistic properties against Ganoderma boninense. J Food Agric Environ 7(3&4):970–976

    Google Scholar 

  • Siddiquee S (2014) Recent advancements on the role and analysis of Volatile Compounds (VOCs) from Trichoderma. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of trichoderma, pp 138–175

    Google Scholar 

  • Sivasithamparam K, Ghisalberti E (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium basis Biology, taxonomy and genetics, vol 1. Taylor and Francis, London, pp 139–191

    Google Scholar 

  • Sofo A, Scopa A, Manfra M, De Nisco M, Tenore G, Troisi J et al (2011) Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus × P-canescens). Plant Growth Regul 65(2):421–425

    Article  CAS  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    Article  CAS  PubMed  Google Scholar 

  • Strieker M, Tanovic A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20:234–240

    Article  CAS  PubMed  Google Scholar 

  • Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vagvölgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiol Immunol Hung 52:137–168

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones: roles for auxin and gibberellin. Crit Rev Plant Sci 24(4):249–265

    Article  CAS  Google Scholar 

  • Tijerino A, Cardoza RE, Moraga J, Malmierca MG, Vicente F, Aleu J, Collado IG, Gutiérrez S, Monte E, Hermosa R (2011a) Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet Biol 48:285–296

    Article  CAS  PubMed  Google Scholar 

  • Tijerino A, Cardoza RE, Moraga J, Malmierca MG, Aleu J, Collado IG, Gutiérrez S, Monte E, Hermosa R (2011b) Overexpression of the trichodiene synthase gene tri5: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins 3:1220–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirillini B, Verdelli G, Paolocci F, Ciccioli P, Frattoni M (2000) The volatile organic compounds from the mycelium of tuber borchii Vitt. Phytochemistry 55:983e985

    Article  Google Scholar 

  • Todorovic B, Glick BR (2008) The interconversion of ACC deaminase and D-cysteine desulfhydrase by directed mutagenesis. Planta 229(1):193–205

    Article  CAS  PubMed  Google Scholar 

  • Velázquez-Robledo R, Contreras-Cornejo HA, Macías-Rodríguez L, Hernández-Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Molecular plant-microbe interactions 24(12):1459–1471

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vicente MF, Cabello A, Platas G, Basilio A, Diez MT, Dreikorn S, Giacobbe RA, Onishi JC, Meinz M, Kurtz MB, Rosenbach M, Thompson J, Abruzzo G, Flattery A, Kong L, Tsipouras A, Wilson KE, Pelaez F (2001) Antimicrobial activity of ergokonin a from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for the Trichoderma–plant interaction Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  • Vinale F, Girona IA, Nigro M, Mazzei P, Piccolo A, Ruocco M, Woo SL, Rosa DR, Herrera CL, Lorito M (2012) Cerinolactone, a hydroxyl-lactone derivative from Trichoderma cerinum. J Nat Prod 27:103–106

    Article  CAS  Google Scholar 

  • Viterbo A, Horwitz BA (2010) Mycoparasitism. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi, vol 42. American Society for Microbiology, Washington, DC, pp 676–693

    Chapter  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defense responses. Mol Plant Pathol 8:737–746

    Article  CAS  PubMed  Google Scholar 

  • Vizcaíno JA, Sanz L, Cardoza RE, Monte E, Gutiérrez S (2005) Detection of putative peptide synthetase genes in Trichoderma species: application of this method to the cloning of a gene from T. harzianum CECT2413. FEMS Microbiol Lett 244:139–148

    Article  PubMed  CAS  Google Scholar 

  • Vizcaíno JA, González FJ, Suárez MB, Redondo J, Heinrich J, Delgado-Jarana J, Hermosa R, Gutiérrez S, Monte E, Llobell A, Rey M (2006) Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT2413. BMC Genomics 7:193–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Chem Biol 277:20862–20868

    Article  CAS  Google Scholar 

  • Yadav G, Gokhale R, Mohanty D (2009) Towards prediction of metabolic products of polyketide synthases: an in silico analysis. PLoS Comput Biol 5:1–14

    Article  CAS  Google Scholar 

  • Zeppa G, Allegrone G, Barbeni M, Guarda PA (1990) Variability in the production of volatile metabolites by Trichoderma viride. Ann Microbiol Enzyme 40:171–176

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafiquzzaman Siddiquee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Siddiquee, S. (2017). Fungal Volatile Organic Compounds: Emphasis on Their Plant Growth-Promoting. In: Choudhary, D., Sharma, A., Agarwal, P., Varma, A., Tuteja, N. (eds) Volatiles and Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9_17

Download citation

Publish with us

Policies and ethics