Skip to main content

Herbivore-Induced Plant Volatiles

  • Chapter
  • First Online:
Volatiles and Food Security
  • 919 Accesses

Abstract

In nature, plants are subjected to various abiotic and biotic stresses of which stress due to herbivore attack is of major concern. There are many direct and indirect mechanisms which operate within the plants to combat herbivores. The direct defence is generally of two types, i.e. physical and chemical. The physical defence includes the presence of morphological barriers such as trichomes, silica deposition and cell wall lignifications. The chemical methods involve the synthesis of many toxic compounds like terpenoids, alkaloids, phenols, etc. Indirect defence involves production of volatile compounds from the host plant which can attract natural enemies of herbivores. These compounds are known as herbivore-induced plant volatiles (HIPVs) and play an important role in communicating with the parasitoids to prey upon the attacking herbivores. HIPVs not only help the plants to attract with the natural enemies of herbivores but also warn the neighbouring plants from the upcoming danger. Thus, HIPVs provide a reliable mechanism for natural management of insect pests in plants. This chapter presents the herbivore-induced plant volatiles, types, biosyntheses, emission and their role in plant defence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aharoni A, Keizer LCP, Bouwmeester HJ, Sun ZK, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AMML, De Vos RCH, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–513

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kuhnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98

    Article  CAS  PubMed  Google Scholar 

  • Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A (2004) Substrate usage by recombinant alcohol acyltransferases from various fruit species. Plant Physiol 135:1865–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142

    Article  CAS  Google Scholar 

  • Boatright J, Negre F, Chen XL, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in Petunia petal tissue. Plant Physiol 135:1993–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwmeester HJ, Gershenzon J, Konings MCJM, Croteau R (1998) Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway—I. Demonstration of enzyme activities and their changes with development. Plant Physiol 117:901–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJA, Dicke M (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60(9):2575–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington, DC

    Google Scholar 

  • Chen F, D’Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E (2003) An Arabidopsis thaliana gene for methyl salicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36:577–588

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Ro D-K, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135:1956–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Ann Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci U S A 89(11):4938–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Sun Y, Su J, Ren Q, Li C, Ge F (2012) Elevated O3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant. Arthropod-Plant Interact 6:425–437

    Article  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Tumlinson JH (1998) Herbivore infested plants selectively attract parasitoids. Nature 393:570–574

    Article  Google Scholar 

  • Deng W, Hamilton-Kemp TR, Nielsen MT, Andersen RA, Collins GB, Hildebrand DF (1993) Effects of six-carbon aldehydes and alcohols on bacterial proliferation. J Agric Food Chem 41:506–510

    Article  CAS  Google Scholar 

  • Dudareva, N., Pichersky, E. (2006) Metabolic engineering of floral scent of ornamentals. J Crop Improv (in press)

    Google Scholar 

  • Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Dauria JC, Nam KH, Raguso RA, Pichersky E (1998) Acetyl-coa-benzylalcohol acetyltransferase—an enzyme involved in floral scent production in Clarkia breweri. Plant J 14:297–304

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxy xylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:R221–R233

    Article  CAS  PubMed  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Protect 65:1545–1560

    Article  CAS  Google Scholar 

  • Gouinguene SP, Turlings TCJ (2002) The effect of abiotic factors on induced volatile emissions in corn plants. J Plant Physiol 129(3):1296–1307

    Article  CAS  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95:853–860

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand DF, Brown GC, Jackson DM, Hamilton-Kemp TR (1993) Effects of some leaf-emitted volatile compounds on aphid population increase. J Chem Ecol 19:1875–1887

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JK, Blande JD (2012) Molecular plant volatile communication, sensing in nature edited by Carlos Lopez-Larrea, 17–31

    Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    Article  CAS  PubMed  Google Scholar 

  • Joutsensaari J, Loivamaki M, Vuorine T, Miettinen P, Nerg AM, Holopainen JK, Laaksonen A (2005) Nanoparticle formation by ozonolysis of inducible plant volatiles. Atmos Chem Phys 5:11489–11495

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2142–2143

    Article  Google Scholar 

  • Kolosova N, Sherman D, Karlson D, Dudareva N (2001) Cellular and subcellular localization of S-adenosyl-L-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in snapdragon flowers. Plant Physiol 126:956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroll JH, Seinfeld JH (2008) Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos Environ 42:3593–3624

    Article  CAS  Google Scholar 

  • Law JH, Regnier FE (1971) Pheromones. Ann Rev Biochem 40:533–548

    Article  CAS  PubMed  Google Scholar 

  • Lerdau M, Slobodkin K (2002) Trace gas emissions and species-dependent ecosystem services. Trends Ecol Evol 17:309–312

    Article  Google Scholar 

  • Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126:993–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luft S, Curio E, Tacud B (2003) The use of olfaction in the foraging behaviour of the golden-mantled flying fox, Pteropus pumilus, and the greater musky fruit bat, Ptenochirus jagori (Megachiroptera : Pteropodidae). Naturwiss 90:84–87

    CAS  PubMed  Google Scholar 

  • Maeda T, Takabayashi J, Yano S et al (2000) Effects of light on the Tritrophic interaction between kidney bean plants, two-spotted spider mites and predatory mites, Amblyseius womersleyi (Acari: Phytoseiidae). Exp Appl Aracol 24(5):415–425

    Article  CAS  Google Scholar 

  • McCaskill D, Croteau R (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197:49–56

    Article  CAS  Google Scholar 

  • McCloud ES, Baldwin IT (1998) Herbivore and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435

    Article  Google Scholar 

  • McConkey ME, Gershenzon J, Croteau RB (2000) Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint. Plant Physiol 122:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFrederick Q. S., Fuentes J. D., Roulston T., Kathilankal J. C., Lerdau M. (2009). Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia160: 411–420

    Google Scholar 

  • Mercke P, Kappers IF, Verstappen FWA, Vorst O, Dicke M, Bouwmeester HJ (2004) Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol 135:2012–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defence. Can J Zool 88:628–667

    Article  CAS  Google Scholar 

  • Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate-and salicylate related signalling pathways for the production of specific herbivore induced volatiles in plants. Plant Cell Physiol 41:391–398

    Article  CAS  PubMed  Google Scholar 

  • Pare PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 114:1161–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pare PW, Tumlinson JH (1999) Plant volatiles as defence against insect herbivores. Plant Physiol 121:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pare PW, Alborn HT, Tumlinson JH (1998) Concerted biosynthesis of an insect elicitor of plant volatiles. Proc Natl Acad Sci U S A 95:13971–13975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez AG, Rios JJ, Sanz C, Olias JM (1992) Aroma components and free amino acids in strawberry variety Chandler during ripening. J Agric Food Chem 40:2232–2235

    Article  CAS  Google Scholar 

  • Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defence. Curr Opin Plant Biol 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Pinto DM, Blande JD, Souza SR, Nerg A, Holopainen JK (2010) Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 36:22–34

    Article  CAS  PubMed  Google Scholar 

  • Plessl M, Heller W, Payer H, Elstner E, Habermeyer J, Heiser I (2005) Growth parameters and resistance against Drechslera teres of spring barley (Hordeum vulgare L. cv. Scarlett) grown at elevated ozone and carbon dioxide concentrations. Plant Biol 7:694–705

    Article  CAS  PubMed  Google Scholar 

  • Pratt KA, Mielke LH, Shepson PB, Bryan AM, Steiner AL, Ortega J et al (2012) Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest. Atmos Chem Phys 12:10125–10143

    Article  CAS  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among 3trophic levels—influence of plants on interactions between insect herbivores and natural enemies. Ann Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Raguso RA, Pichersky E (1995) Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Plant Sys Evol 194:55–67

    Article  CAS  Google Scholar 

  • Reineccius G (2006) Flavor chemistry and technology. CRC Press, Boca Raton

    Google Scholar 

  • Reinhard J, Srivivasan MV, Zhang S (2004) Scent-triggered navigation in honeybees. Nature 427:411

    Article  CAS  PubMed  Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for phenomenal sensitivity of willows. In: Hedin PA (ed) Plant resistance to insects, Symposium Series, vol 208. American Chemical Society, Washington, DC, pp 55–68

    Chapter  Google Scholar 

  • Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to(Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  CAS  PubMed  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an a biotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50

    Article  Google Scholar 

  • Shah J (2003) The salicylic acid loop in plant defence. Curr Opin Plant Biol 6(4):365–371

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong DM, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in Kudzu. Plant Physiol 137:700–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takabayashi J, Dicke M (1996) Plant–carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113

    Article  Google Scholar 

  • Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1329–1354

    Article  CAS  PubMed  Google Scholar 

  • Turlings TCJ, McCall PJ, Alborn HT, Tumlinson JH (1993a) J Chem Ecol 19:411–425

    Article  CAS  PubMed  Google Scholar 

  • Van Huijsduijnen RH, Alblas SW, De Rijk RH, Bol JF (1986) Induction by salicylic acid of pathogenesis-related proteins and resistance to alfalfa mosaic virus infection in various plant species. J Gen Virol 67:2135–2143

    Article  Google Scholar 

  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci USA 98:8139–8144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateshan R (2015) Biosynthesis and regulation of herbivore induced plant volatile emission. J Indian Inst Sci 95(1):25–34

    Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  CAS  PubMed  Google Scholar 

  • Virtanen A, Joutsensaari J, Koop T, Kannosto J, Yli-Pirilä P, Leskinen J et al (2010) An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467:824–827

    Article  CAS  PubMed  Google Scholar 

  • War AR, Sharma HC, Paulraj MG, War MY, Ignacimuthu S (2011) Herbivore induced plant volatiles: their role in pant defense for pest management. J Plant Signal Behav 6(12):1973–1978

    Article  CAS  Google Scholar 

  • Wyllie SG, Leach DN (1992) Sulfur-containing compounds in the aroma volatiles of melons (Cucumis melo). J Agric Food Chem 40:253–256

    Article  CAS  Google Scholar 

  • Wyllie SG, Leach DN, Wang Y, Shewfelt RL (1995) Key aroma compounds in melons: their development and cultivar dependence. In: Rouseff RL, Leachy MN (eds) Fruit flavors: biogenesis, characterization, and authentication. American Chemical Society, Washington, pp 248–257

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sabitha Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rani, A.S., Sulakshana, G. (2017). Herbivore-Induced Plant Volatiles. In: Choudhary, D., Sharma, A., Agarwal, P., Varma, A., Tuteja, N. (eds) Volatiles and Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9_15

Download citation

Publish with us

Policies and ethics