Skip to main content

Mechanism Composition Principle Based on Single-Open-Chain Unit

  • Chapter
  • First Online:
Topology Design of Robot Mechanisms

Abstract

The mechanism composition principle based on Single-Open-Chain (SOC) unit is introduced in this chapter. The content deals with: (1) The mechanism composition principle based on SOC unit is proposed. Constraint degree of SOC is defined, which is used to describe constraint features of SOC unit to DOF of the mechanism. (2) A general method for decomposing an AKC into ordered SOCs is proposed. The coupling degree of an AKC is defined and is used to represent complexity of the AKC. (3) A general method for decomposing mechanism into ordered SOCs is proposed. Criteria for AKC determination is defined and is used to determine AKCs contained in the mechanism. (4) A general method for determination of DOF types is proposed based on the AKCs in the mechanism. And a general method for motion decoupling design based on partial DOF is proposed. (5) This mechanism composition principle could be used to establish a systematic theory for unified modeling of mechanism topology, kinematics and dynamics based on SOC unit (refer to Sect. 7.7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Assur LV (1913) Investigation of Plane Hinged Mechanisms with Lower Pairs from the Point of View of Their Structure and Classification (in Russian): Part I, II. Bull. Petrograd Polytech Inst 20 :329–386. Bull Petrograd Polytech Inst 21 (1914) 187–283, (vols. 21–23, 1914–1916)

    Google Scholar 

  2. Dobrovolskii VV (1939) Main principles of rational classification. AS USSR

    Google Scholar 

  3. Verho A (1973) An extension of the concept of the group. Mech Mach Theor 8(2):249–256. doi:10.1016/0094-114X(73)90059-1

    Article  Google Scholar 

  4. Manolescu NI (1979) A unified method for the formation of all planar jointed kinematic chains and Baranov trusses. Environ Plann B 6(4):447–454

    Article  Google Scholar 

  5. Galletti C (1986) A note on modular approaches to planar linkage kinematic analysis. Mech Mach Theor 21(5):385–391

    Article  MathSciNet  Google Scholar 

  6. Fanghella P (1988) Kinematics of spatial linkages by group algebra: a structure-based approach. Mech Mach Theor 23(3):171–183. doi:10.1016/0094-114X(88)90102-4

    Article  Google Scholar 

  7. Ceresole E, Fanghella P, Galletti C (1996) Assur’s groups, AKCs, basic trusses, SOCs, etc.: modular kinematics of planar linkages. In: Proceedings of the 1996 ASME design engineering technical conference 96-DETC/MECH-1027

    Google Scholar 

  8. Mruthyunjaya TS (2003) Kinematic structure of mechanisms revisited. Mech Mach Theor 38:279–320

    Article  MathSciNet  MATH  Google Scholar 

  9. Servatius B, Shai O, Whiteley W (2010) Combinatorial Characterization of the Assur graphs from engineering. Eur J Comb 31(4):1091–1104

    Article  MathSciNet  MATH  Google Scholar 

  10. Shai O, Sljoka A, Whiteley W (2013) Directed graphs, decompositions, and spatial rigidity. Discr Appl Math 161:3028–3047

    Article  MATH  Google Scholar 

  11. Reuleaux F (1876) Theoretische kinematic. Fridrich vieweg, Braunschweig, Germany, 1875 (Kennedy ABW, (1876) The kinematics of machinery. Reprinted Dover 1963)

    Google Scholar 

  12. Franke R (1951) Vom Aufbau der Getriebe, Vol. 1”, Beuthvertrieb, Berlin, 1943, 2nd edition, VDI, Verlag (1958). R~ Franke, Vom Aufbau der Getriebe, Vol. 1, 2nd edition VDI Verlag (1958).R~ Franke, Getriebe

    Google Scholar 

  13. Beyer R., 1963, “ The Kinematic Synthesis of Mechanisms”, McGraw-hill Book Comp

    Google Scholar 

  14. Hain K (1967) Applied kinematics, second edn. McGraw-Hill, New York

    Google Scholar 

  15. Woo LS (1967) Type synthesis of plane linkages. ASME J Eng Ind B 89:159–172

    Article  Google Scholar 

  16. Tischler C, Samuel A, Hunt KH (1995) Kinematic chains for robot hands—I. Orderly number-synthesis. Mech Mach Theor 30(8):1193–1215. Retrieved from http://www.sciencedirect.com/science/article/pii/0094114X9500043X

  17. Wittenburg J (1977) Dynamics of Systems of Rigid Bodies. Teubner, Stuttgart

    Book  MATH  Google Scholar 

  18. Dobrjanskyj L, Freudenstein F (1967) Some applications of graph theory to the structural analysis of mechanisms. J Eng Ind 89:153–158

    Article  Google Scholar 

  19. Paul B (1979) Kinematics and dynamics of planar machinery. Prentice-Hall Inc, New Jersey

    Google Scholar 

  20. Kinzel GL et al (1984) The analysis of planar linkages using a modular approach. Mech Mach Theor 19:165–172

    Article  Google Scholar 

  21. Sohn WJ, Freudenstein F (1989) An application of dual graphs to the automatic generation of the kinematic structure of mechanisms. ASME J Mech Trans Auto Design 111(4):494–497

    Article  Google Scholar 

  22. Tuttle ER et al (1989) Enumeration of basic kinematic chains using the theory of finite groups. Trans ASME J Mech Trans Auto Design 111(4):498–503

    Article  Google Scholar 

  23. Waldron KJ, Sreenivasan SV (1996) A study of the solvability of the position problem for multi-circuit mechanisms by way of example of the double butterfly linkage. ASME J Mech Design 118:390–395

    Article  Google Scholar 

  24. Tsai L-W (1999) Robot analysis: the mechanics of serial and parallel manipulators. John Wiley, New York

    Google Scholar 

  25. McCarthy JM, Soh GS (2011) Geometric design of linkages. Springer, New York

    Book  MATH  Google Scholar 

  26. Yang T-L, Yao F-H (1988) The topological characteristics and automatic generation of structural analysis and synthesis of plane mechanisms, part 1-theory, part 2-application. In: Proceedings of ASME mechanisms conference, vol (1). pp 179–190

    Google Scholar 

  27. Yang T-L, Yao F-H (1992) The topological characteristics and automatic generation of structural analysis and synthesis of spatial mechanisms, part 1-topological characteristics of mechanical network; part 2-automatic generation of structure types of kinematic chains. In: Proceedings of ASME mechanisms conference DE-47. pp 179–190

    Google Scholar 

  28. Yang T-L (1996) Basic theory of mechanical system: structure, kinematic and dynamic. China machine Press, Beijing

    Google Scholar 

  29. Yang T-L, Yao F-H, Zhang M (1998) A comparative study on some modular approaches for analysis and synthesis of planar linkages: part I—modular structural analysis and modular kinematic analysis. In: Proceedings of the ASME mechanisms conference Atlanta, DETC98/MECH-5920

    Google Scholar 

  30. Yang T-L, Liu A-X, Shen H-P et al (2015) Composition principle based on SOC unit and coupling degree of BKC for general spatial mechanisms. The 14th IFToMM World Congress, Taipei, Taiwan, 25–30 October 2015. doi: 10.6567/IFToMM.14TH.WC.OS13.135

  31. Jin Q, Yang T-L (2004) Theory for topology synthesis of parallel manipulators and its application to three dimension translation parallel manipulators. ASME J Mech Des 126:625–639

    Article  Google Scholar 

  32. Yang T-L (2004) Theory of topological structure for robot mechanisms. China Machine Press, Beijing

    Google Scholar 

  33. Yang T-L, Sun D-J (2012) A general DOF formula for parallel mechanisms and multi-loop spatial mechanisms. ASME J Mech Robot 4(1):011001

    Article  MathSciNet  Google Scholar 

  34. Yang T-L, Liu A-X, Luo Y-F et al (2012) Theory and application of robot mechanism topology. China Science Press, Beijing

    Google Scholar 

  35. Jin Q, Yang T-L (2004) Synthesis and analysis of a group of 3-degree-of-freedom partially decoupled parallel manipulators. ASME J Mech Des 126:301–306

    Article  Google Scholar 

  36. Carricato Marco (2005) Fully isotropic four-degrees-of-freedom parallel mechanisms for Schoenflies motion. Int J Robot Res 24(5):397–414

    Article  Google Scholar 

  37. Sébastien B, Arakelian V, Guégan S (2008) Design and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator with high-load carrying capacity. J Mech Design 130:122303

    Article  Google Scholar 

  38. Lee Chung-Ching, Hervé Jacques M (2009) Uncoupled actuation of overconstrained 3T-1R hybrid parallel manipulators. Robotica 27:103–117

    Article  Google Scholar 

  39. Carricato M (2009) Decoupled and homokinetic transmission of rotational motion via constant-velocity joints in closed-chain orientational manipulators. J Mech Robot 1:041008

    Article  Google Scholar 

  40. Glazunov Victor (2010) Design of decoupled parallel manipulators by means of the theory of screws. Mech Mach Theor 45:239–250

    Article  MATH  Google Scholar 

  41. Carricato Marco, Parenti-Castelli Vincenzo (2004) A novel fully decoupled two degrees of freedom parallel wrist. Int J Robot Res 23(6):661–667

    Article  Google Scholar 

  42. Kong X, Gosselin CM (2002) Type synthesis of linear translational parallel manipulators. Adv Robot Kinematics—Theor Appl 411–420

    Google Scholar 

  43. Li Weimin, Gao Feng, Zhang Jianjun (2005) R-CUBE, a decoupled parallel manipulator only with revolute joints. Mech Mach Theor 40:467–473

    Article  MATH  Google Scholar 

  44. Shen H-P, Yang T-L (2000) A new method and automatic generation for kinematic analysis of complex planar linkages based on the ordered SOC. In: Proceedings of ASME mechanisms conference, vol 70. pp 493–500

    Google Scholar 

  45. Shen H-P, Ting K-L, Yang T-L (2000) Configuration analysis of complex multiloop linkages and manipulators. Mech Mach Theor 35(3):353–362

    Google Scholar 

  46. Hang L-B, Jin Q, Jin Wu, Yang T-L (2000) A general study of the number of assembly configurations for multi-circuit planar linkages. J Southeast Univ (English Ed.) 16(1):46–51

    Google Scholar 

  47. Nicolas R, Federico T (2012) On closed-form solutions to the position analysis of Baranov trusses. Mech Mach Theor 50:179–196

    Article  Google Scholar 

  48. Hahn E, Shai O (2016) A single universal construction rule for the structural synthesis of mechanisms. In: Proceedings of the ASME international design engineering technical conference IDETC/CIE 2016-59133

    Google Scholar 

  49. Hahn E, Shai O (2016) Construction of Baranov trusses using a single universal construction rule. In: Proceedings of the ASME international design engineering technical conference IDETC/CIE 2016-59134

    Google Scholar 

  50. Shi Z-X, Luo Y-F, Hang L-B, Yang T-L (2007) A simple method for inverse kinematic analysis of the general 6R serial robot. ASME J Mech Design 129(8):793–798

    Google Scholar 

  51. Feng Z-Y, Zhang C, Yang T-L (2006) Direct displacement solution of 4-DOF spatial parallel mechanism based on ordered single-open-chain. Chinese J Mech Eng 42(7):35–38

    Google Scholar 

  52. Shi Z-X, Luo Y-F, Yang T-L (2006) Modular method for kinematic analysis of parallel manipulators based on ordered SOCs. In: Proceedings of the ASME 31th mechanisms and robots confernce DETC2006-99089

    Google Scholar 

  53. Huiping S, Guowei S, Jiaming D, Ting-li Y (2017) A novel 3T1R parallel robot 2PaRSS: design and kinematics. In: Proceedings of the ASME 2017 international design engineering technical conferences, Ohio, DETC2017-67265

    Google Scholar 

  54. Zhang J-Q, Yang T-L (1994) A new method and automatic generation for dynamic analysis of complex planar mechanisms based on the SOC. In: Proceedings of 1994 ASME mechanisms conference, vol 71. pp 215–220

    Google Scholar 

  55. Yang T-L, Li H-L, Luo Y-F (1991) On the structure of dynamic equation of any mechanical system. Chinese J Mech Eng 27(4):1–15

    Google Scholar 

  56. Yang T-L, Yao F-H, Zhang M (1998) A comparative study on some modular approaches for analysis and synthesis of planar linkages: Part II — Modular Dynamic Analysis, Modular Structural Synthesis and Modular Kinematic Synthesis,” Proc. of the ASME Mechanisms Conf., DETC98/MECH-6058

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Li Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, TL., Liu, A., Shen, H., Hang, L., Luo, Y., Jin, Q. (2018). Mechanism Composition Principle Based on Single-Open-Chain Unit. In: Topology Design of Robot Mechanisms. Springer, Singapore. https://doi.org/10.1007/978-981-10-5532-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5532-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5531-7

  • Online ISBN: 978-981-10-5532-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics