Skip to main content

Introduction

  • Chapter
  • First Online:
  • 1120 Accesses

Abstract

The theory and method for topology design of robot mechanisms are briefly introduced in this chapter. The content deals with: (1) The systematic theory and method for topological structure design of mechanisms is called mechanism topology and the topological structure design of mechanisms is abbreviated as mechanism topology design. (2) Four categories of PM topology design methods and their main features. (3) Four types of mechanism composition principles and their corresponding mechanism theory systems. (4) Some original work of this book, including: (a) Three new basic concepts (geometric constraint type of axes, POC set and SOC unit) are proposed (refer to Chaps. 2 and 3). (b) Four basic equations for mechanism topology (POC equation for serial mechanisms, POC equation for PMs, full cycle DOF formula, coupling degree formula of AKC) are established (refer to Chaps. 4–7). (c) 12 topological characteristics of PMs are derived. These topological characteristics can be used in topological performance analysis, classification and optimization of PM structure types (refer to Chap. 9). (d) A systematic method for topology design of PMs is established. The design process includes two stages. The first stage covers the structure synthesis in which many structure types can be obtained. The second stage contains topological performance analysis, classification and optimization of structure types based on the topological characteristics (refer to Chaps. 8–10). This method is independent of the motion position and the fixed coordinate system (i.e. it is not necessary to establish the fixed coordinate system). Thus, the full-cycle DOF mechanisms are obtained and the geometry conditions of mechanism existence have generality. Therefore, this method is a geometrical method, which is totally different from the other three methods. (e) The mechanism composition principle based on SOC unit is proposed. This composition principle provides a theoretical basis for unified modeling of mechanism topology, kinematics and dynamics based on SOC unit (refer to Chap. 7).

This is a preview of subscription content, log in via an institution.

References

  1. Ionescu TG (2003) Terminology for mechanisms and machine science. Mech Mach Theory 38

    Google Scholar 

  2. Yang T-L (1983) Structural analysis and number synthesis of spatial mechanisms. In: Proceedings of the 6th world congress, on the theory of machines and mechanisms, New Delhi, vol 1, pp 280–283

    Google Scholar 

  3. Yang T-L, Jin Q, Liu A-X, Shen H-P, Luo Y-F (2002) Structural synthesis and classification of the 3-dof translation parallel robot Mechanisms based on the unites of single-open chain. Chin J Mech Eng 38(8):31–36. doi:10.3901/JME.2002.08.031

    Article  Google Scholar 

  4. Jin Q, Yang T-L (2004) Theory for topology synthesis of parallel manipulators and its application to three-dimension-translation parallel manipulators. ASME J Mech Des 126:625–639

    Article  Google Scholar 

  5. Hunt KH (1978) Kinematic geometry of mechanisms. Clarendon Press, Oxford

    MATH  Google Scholar 

  6. Frisoli A, Checcacci F et al (2000) Synthesis by screw algebra of translating in-parallel actuated mechanisms. Advance in Robot Kinematics, pp 433–440

    Google Scholar 

  7. Huang Z, Li QC (2002) General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. Int J Robot Res 21(2):131–145

    Article  Google Scholar 

  8. Huang Z, Li QC (2003) Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method. Int J Robot Res 22:59–79

    Google Scholar 

  9. Kong X, Gosselin CM (2004) Type synthesis of 3T1R 4-dof parallel manipulators based on screw theory. IEEE Trans Rob Autom 20(2):181–190

    Article  Google Scholar 

  10. Kong X, Gosselin CM (2007) Type synthesis of parallel mechanisms. Springer Tracts in Advanced Robotics, vol 33

    Google Scholar 

  11. Huang Z, Li QC, Ding HF (2012) Theory of parallel mechanisms. Springer, Dordrecht

    Google Scholar 

  12. Meng X, Gao F, Wu S, Ge J (2014) Type synthesis of parallel robotic mechanisms: framework and brief review. Mech Mach Theory 78:177–186

    Article  Google Scholar 

  13. Herve JM (1978) Analyse structurelle des mécanismes par groupe des déplacements. Mech Mach Theory 13:437–450

    Article  Google Scholar 

  14. Hervé JM (1995) Design of parallel manipulators via the displacement group. In: Proceedings of the 9th world congress on the theory of machines and mechanisms Milan, Italy, pp 2079–2082

    Google Scholar 

  15. Fanghella P, Galletti C (1995) Metric relations and displacement groups in mechanism and robot kinematics. ASME J Mech Des 117:470–478

    Article  MATH  Google Scholar 

  16. Selig J (1996) Geometrical methods in robotics. Springer, New York

    Book  MATH  Google Scholar 

  17. Herve JM (1999) The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mech Mach Theory 34:719–730

    Article  MathSciNet  MATH  Google Scholar 

  18. Li QC, Huang Z, Herve JM (2004) Type synthesis of 3R2T 5-DOF parallel mechanisms using the lie group of displacements. IEEE Trans Rob Autom 20:173–180

    Article  Google Scholar 

  19. Li QC, Herve JM (2009) Parallel mechanisms with bifurcation of schonflies motion. IEEE Trans Rob 25(1):158–164

    Article  Google Scholar 

  20. Li QC, Herve JM (2010) 1T2R parallel mechanisms without parasitic motion. IEEE Trans Rob 26:401–410

    Article  Google Scholar 

  21. Meng J, Liu GF, Li ZX (2007) A geometric theory for analysis and synthesis of sub-6 dof Parallel manipulators. IEEE Trans Rob 23:625–649

    Article  Google Scholar 

  22. Rico JM, Cervantes JJ, Rocha J et al (2007) Mobility of single loop linkages: A final word? In: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, DETC2007–34936

    Google Scholar 

  23. Gogu G (2004) Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations. Eur J Mech A Solids 23:1021–1039

    Article  MATH  Google Scholar 

  24. Gogu G (2007) Structural synthesis of fully-Isotropic parallel robots with schonflies motions via theory of linear transformations and evolutionary morphology. Eur J Mech A Solids 26:242–269

    Article  MathSciNet  MATH  Google Scholar 

  25. Gogu G (2008) Structural synthesis of parallel robots: part 1: methodology. Springer, Dordrecht

    Book  MATH  Google Scholar 

  26. Gogu G (2009) Structural synthesis of parallel robots: part 2: translational topologies with two and three degrees of freedom. Springer, Dordrecht

    Book  MATH  Google Scholar 

  27. Gogu G (2010) Structural synthesis of parallel robots: part 3: topologies with planar motion of the moving platform. Springer, Dordrecht

    MATH  Google Scholar 

  28. Gogu G (2012) Structural synthesis of parallel robots: part 4: other topologies with two and three degrees of freedom. Springer, Dordrecht

    Book  MATH  Google Scholar 

  29. Yang T-L, Jin Q et al (2001) A general method for type synthesis of rank-deficient parallel robot mechanisms based on SOC unit. Mach Sci Technol 20(3):321–325

    MathSciNet  Google Scholar 

  30. Qiong J (2001) Dissertation: Study on overconstrained mechanisms and low-mobility parallel robot mechanisms. Southeast University, China

    Google Scholar 

  31. Yang T-L, Jin Q et al (2001) Structural synthesis of 4-dof (3-translational and 1-rotation) parallel robot mechanisms based on the unites of single-opened-chain. In: The 27th design automation conference, Pittsburgh, ASME International DETC2001/DAC-21152

    Google Scholar 

  32. Jin Q, Yang T-L (2001) Structure synthesis of a class five-dof parallel robot mechanisms based on single-opened-chain units. In: The 27th design automation conference, Pittsburgh, ASME International DETC2001/DAC-21153

    Google Scholar 

  33. Yang T-L (2004) Theory of topological structure for robot mechanisms. Chin Mach Press, Beijing

    Google Scholar 

  34. Jin Q, Yang T-L (2002) Structure Synthesis and analysis of parallel manipulators with 2-dimension translation and 1-dimension rotation. In: Proceedings of ASME 28th design automation conference, Montreal, DETC 2002/MECH 34307

    Google Scholar 

  35. Jin Q, Yang T-L (2002) Synthesis and analysis of a group of 3 dof (1T-2R) decoupled parallel manipulator In: Proceedings of ASME 28th design automation conference, Montreal, DETC 2002/MECH 34240

    Google Scholar 

  36. Jin Q, Yang T-L (2004) Synthesis and analysis of a group of 3-degree-of-freedom partially decoupled parallel manipulators. ASME J Mech Des 126:301–306

    Article  Google Scholar 

  37. Shen H-P, Yang T-L et al (2005) Synthesis and analysis of kinematic structures of 6-dof parallel robotic mechanisms. Mech Mach Theory 40:1164–1180

    Article  MATH  Google Scholar 

  38. Shen H-P, Yang T-L et al (2005) Structure and displacement analysis of a novel three-translation parallel mechanism. Mech Mach Theory 40:1181–1194

    Article  MATH  Google Scholar 

  39. Yang T-L, Liu A-X, Luo Y-F et al (2009) Position and orientation characteristic equation for topological design of robot mechanisms. ASME J Mech Des 131:021001–1–021001-17

    Google Scholar 

  40. Yang T-L, Liu A-X, Shen H-P et al (2013) On the correctness and strictness of the POC equation for topological structure design of robot mechanisms. ASME J Mech Robot 5(2):021009-1–021009-18

    Article  Google Scholar 

  41. Yang T-L, Sun D-J (2006) General formula of degree of freedom for parallel mechanisms and its application. In: Proceedings of ASME 2006 mechanisms conference, DETC2006-99129

    Google Scholar 

  42. Yang T-L, Sun D-J (2008) Rank and mobility of single loop kinematic chains. In: Proceedings of the ASME 32-th mechanisms and robots conference, DETC2008-49076

    Google Scholar 

  43. Yang T-L, Sun D-J (2012) A general DOF formula for parallel mechanisms and multi-loop spatial mechanisms. ASME J Mech Robot 4(1):011001-1–011001-17

    Google Scholar 

  44. Yang T-L, Liu A-X, Shen H-P et al (2015) Composition principle based on SOC unit and coupling degree of BKC for general spatial mechanisms. In: The 14th IFToMM world congress, Taipei, Taiwan, 25–30 Oct 2015. doi:10.6567/IFToMM.14TH.WC.OS13.135

  45. Yang T-L, Shen H-P, Liu A-X, Dai JS (2015) Review of the formulas for degrees of freedom in the past ten years. J Mech Eng 41(9):28–32

    Google Scholar 

  46. Yang T-L, Liu A-X, Shen H-P et al (2012) Theory and application of robot mechanism topology. Chin Sci Press, Beijing

    Google Scholar 

  47. Yang T-L, Liu A-X, Luo Y-F, Shen H-P et al (2010) Basic principles, main characteristics and development tendency of methods for robot mechanism structure synthesis. J Mech Eng 46(9):1–11

    Article  Google Scholar 

  48. Assur LV (1913) Investigation of plane hinged mechanisms with lower pairs from the point of view of their structure and classification (in Russian): Part I, II. Bull Petrograd Polytech Inst 20:329–386. Bull Petrograd Polytech Inst 21(1914):187–283 (vols. 21–23, 1914–1916)

    Google Scholar 

  49. Dobrovolskii VV (1939) Main principles of rational classification. AS USSR

    Google Scholar 

  50. Mruthyunjaya TS (2003) Kinematic structure of mechanisms revisited. Mech Mach Theor 38:279–320

    Article  MathSciNet  MATH  Google Scholar 

  51. Tuttle ER et al (1989) Enumeration of basic kinematic chains using the theory of finite groups. Trans ASME J Mech Trans Auto Design 111(4):498–503

    Article  Google Scholar 

  52. Ceresole E, Fanghella P, Galletti C (1996) Assur’s groups, AKCs, basic trusses, SOCs, etc.: modular kinematics of planar linkages. In: Proceeding of 1996 ASME design engineering technical conference 96-DETC/MECH-1027

    Google Scholar 

  53. Reuleaux F (1876) Theoretische kinematic Fridrich vieweg, Braunschweig, Germany, 1875 (English translation by A.B.W. Kennedy, The kinematics of machinery, 1876, Reprinted Dover, 1963)

    Google Scholar 

  54. Franke R (1951) Von Aufbau der getribe, vol. 1. Beuthvertrieb, Berlin. (1943) vol. 2. VDI, Dusseldorf

    Google Scholar 

  55. Hain K (1967) Applied kinematics, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  56. Wittenburg J (1977) Dynamics of systems of rigid bodies. Teubner, Stuttgart

    Book  MATH  Google Scholar 

  57. Paul B (1979) Kinematics and dynamics of planar machinery. Prentice-Hall Inc., New Jersey

    Google Scholar 

  58. Sohn WJ, Freudenstein F (1989) An application of dual graphs to the automatic generation of the kinematic structure of mechanisms. ASME J Mech Trans Auto Des 111(4):494–497

    Article  Google Scholar 

  59. Tsai L-W (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New York

    Google Scholar 

  60. Yang T-L, Yao F-H (1988) The topological characteristics and automatic generation of structural analysis and synthesis of plane mechanisms, part 1-theory, part 2-application. In: Proceedings of ASME Mechanisms Conference on, Orlando, vol. 1, pp 179–190

    Google Scholar 

  61. Yang T-L, Yao F-H (1992) The topological characteristics and automatic generation of structural analysis and synthesis of spatial mechanisms, part 1-topological characteristics of mechanical network; part 2-automatic generation of structure types of kinematic chains. In: Proceedings of ASME Mechanisms Conference, Phoenix, DE-47, pp 179–190

    Google Scholar 

  62. Yang T-L (1996) Basic theory of mechanical system: structure, kinematic and dynamic. China Mach Press, Beijing

    Google Scholar 

  63. Shen H-P, Yang T-L (1994) A new method and automatic generation for kinematic analysis of complex planar linkages based on the ordered SOC. Proc ASME Mech Conf 70:493–500

    Google Scholar 

  64. Kong X, Yang T-L (1995) A zero simple open chain approach to the displacement analysis of multi-loop general spatial linkages. In: Proceedings of the 9th world congress on the theory of machines and mechanisms, Milano, vol 2, 777–781

    Google Scholar 

  65. Yang T-L, Yao F-H, Zhang M (1998) A comparative study on some modular approaches for analysis and synthesis of planar linkage. In: Proceedings of ASME mechanisms conference Atlanta, DETC98/MECH-5920

    Google Scholar 

  66. Shen H-P, Ting K-L, Yang T-L (2000) Configuration analysis of complex multiloop linkages and manipulators. Mech Mach Theory 35(3):353–362

    Article  MathSciNet  MATH  Google Scholar 

  67. Shi Z-X, Luo Y-F, Yang T-L (2006) Modular method for kinematic analysis of parallel manipulators based on ordered SOCs. In: Proceedings of the ASME 31-th mechanisms and robots conference, DETC2006-99089

    Google Scholar 

  68. Shi Z-X, Lao Y-F, Hang L-B, Yang T-L (2007) A simple method for inverse kinematic analysis of the general 6R serial robot. ASME. J Mech Des 129(8):793–798

    Google Scholar 

  69. Nicolas R, Federico T (2012) On closed-form solutions to the position analysis of baranov trusses. Mech Mach Theory 50:179–196

    Article  Google Scholar 

  70. Zhang J-Q, Yang T-L (1994). A new method and automatic generation for dynamic analysis of complex planar mechanisms based on the SOC. In: Proceedings of 1994 ASME mechanisms conference, vol 71, pp 215–220

    Google Scholar 

  71. Yang T-L, Li H-L, Luo Y-F (1991) On the structure of dynamic equation of any mechanical system. Chin J Mech Eng 27(4):1–15

    Google Scholar 

  72. Shen C-W, Hang L-B, Yang T-L (2017) Position and orientation characteristics of robot mechanisms based on geometric algebra. Mech Mach Theory 108:231–243

    Article  Google Scholar 

  73. Yang T-L, Liu A-X, Shen H-P, Hang L-B (2017) Topological structural synthesis of 3T-1R parallel mechanisms based on POC equations. Chin J Mech Eng 53(21):54–64. doi:10.3901/JME.2017.21.054

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Li Yang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, TL., Liu, A., Shen, H., Hang, L., Luo, Y., Jin, Q. (2018). Introduction. In: Topology Design of Robot Mechanisms. Springer, Singapore. https://doi.org/10.1007/978-981-10-5532-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5532-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5531-7

  • Online ISBN: 978-981-10-5532-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics