Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 248 Accesses

Abstract

This chapter presents a dynamic analysis of a two-raft wave-powered desalination device based on the three-dimensional wave radiation-diffraction method. The device consists of two hinged cylindrical rafts of elliptical cross section and a Power Take-Off (PTO) system at the joint, which is used to represent a simplified desalination module of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babarit A, Clément AH (2006) Optimal latching control of a wave energy device in regular and irregular waves. Appl Ocean Res 28(2):77–91

    Article  Google Scholar 

  • Babarit A, Hals J, Muliawan MJ et al (2012) Numerical benchmarking study of a selection of wave energy converters. Renewable Energy 41:44–63

    Article  Google Scholar 

  • Chen W, Zhang Y, Zheng S (2014) Advance in the study of wave energy dissipation of floating bodies. In: Proceedings of the 2nd Asian Wave and Tidal Energy Conference

    Google Scholar 

  • Cummins WE (1962) The impulse response function and ship motions. Schiffstechnik 9(1661):101–109

    Google Scholar 

  • Drew B, Plummer AR, Sahinkaya MN (2009) A review of wave energy converter technology. Proc Inst Mech Eng, Part A: J Power Energy 223:887–902

    Article  Google Scholar 

  • Falnes J (2002) Ocean waves and oscillating systems: linear interactions including wave-energy extraction, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Greco M, Colicchio G, Faltinsen OM (2009a) Bottom slamming for a very large floating structure: uncoupled global and slamming analyses. J Fluids Struct 25(2):406–419

    Article  Google Scholar 

  • Greco M, Colicchio G, Faltinsen OM (2009b) Bottom slamming for a very large floating structure: coupled global and slamming analyses. J Fluids Struct 25(2):420–430

    Article  Google Scholar 

  • Kraemer DRB (2001) The motions of hinged-barge systems in regular seas. Dissertation, Johns Hopkins University

    Google Scholar 

  • Loukogeorgaki E, Michailides C, Angelides DC (2012) Hydroelastic analysis of a flexible mat-shaped floating breakwater under oblique wave action. J Fluids Struct 31:103–124

    Article  Google Scholar 

  • Michailides C, Angelides DC (2012) Modeling of energy extraction and behavior of a flexible floating breakwater. Appl Ocean Res 35:77–94

    Article  Google Scholar 

  • Michailides C, Angelides DC (2015) Optimization of a flexible floating structure for wave energy production and protection effectiveness. Eng Struct 85:249–263

    Article  Google Scholar 

  • Newman JN (1994) Wave effects on deformable bodies. Appl Ocean Res 16(59):47–59

    Article  Google Scholar 

  • Nolan G, Catháin MÓ, Murtagh J et al (2003) Modelling and simulation of the power take-off system for a hinge-barge wave-energy converter. In: Proceedings of the 5th European Wave Energy Conference

    Google Scholar 

  • Retzler C, Pizer D, Henderson R et al (2003) Pelamis: advances in the numerical and experimental modelling programme. In: Proceedings of the 5th European Wave Energy Conference

    Google Scholar 

  • Sheng W, Alcorn R, Lewis A (2014) On improving wave energy conversion, part I: optimal and control technologies. Renew Energy 75:922–934

    Article  Google Scholar 

  • Stansby P, Moreno EC, Stallard T (2015a) Capture width of the three-float multi-mode multi-resonance broadband wave energy line absorber M4 from laboratory studies with irregular waves of different spectral shape and directional spread. J Ocean Eng Mar Energy 1(3):287–298

    Article  Google Scholar 

  • Stansby P, Moreno EC, Stallard T et al (2015b) Three-float broad-band resonant line absorber with surge for wave energy conversion. Renew Energy 78:132–140

    Article  Google Scholar 

  • Sumer BM, Fredsøe J (2006) Hydrodynamics around cylindrical structures. Revised edn. World Scientific, Singapore

    Google Scholar 

  • Sun L, Eatock Taylor R, Choo YS (2011) Responses of interconnected floating bodies. The IES J Part A: Civ Struct Eng 4(3):143–156

    Google Scholar 

  • Wan Nik WB, Sulaiman OO, Rosliza R et al (2011) Wave energy resource assessment and review of the technologies. Int J Energy Environ 2(6):1101–1112

    Google Scholar 

  • Wooley M, Platts J (1975) Energy on the crest of a wave. New Sci 66(947):241–243

    Google Scholar 

  • Yang C (2015) Study on operating characteristics of oscillating-buoy wave energy converter. Dissertation, Tsinghua University (in Chinese)

    Google Scholar 

  • Zhang YL (2010) Fluid-structure dynamic interaction. Academy Press, Beijing

    Google Scholar 

  • Zhang YL, Zheng SM (2014) Development of experimental teaching platform based on utilization of ocean wave energy. Exp Tech Manag 31(9):69–71 (in Chinese)

    Google Scholar 

  • Zheng SM, Zhang YL (2014) Study on the wave power absorption of a raft-typed wave energy collector. J Eng Heilongjiang University, 5(2):7–13, 42 (in Chinese)

    Google Scholar 

  • Zheng SM, Zhang YL, Chen WC (2014) Optimization of the power take-off system in oscillating wave surge converter. In: Zhang YL, Lin BL. Research Progress of Ocean Energy Technology in 2014. Tsinghua University Press, Beijing (in Chinese)

    Google Scholar 

  • Zheng S, Zhang Y, Sheng W (2015a) Numerical study on the dynamics of a novel two-raft wave energy absorption device. In: Proceedings of the 11th European Wave and Tidal Energy Conference, 07C1-3

    Google Scholar 

  • Zheng SM, Zhang YH, Zhang YL et al (2015b) Numerical study on the dynamics of a two-raft wave energy conversion device. J Fluids Struct 58:271–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siming Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zheng, S. (2018). Numerical Study on Hydrodynamic Characteristics. In: Study on Hydrodynamic Characteristics of the Raft-type Wave-Powered Desalination Device. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-5517-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5517-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5516-4

  • Online ISBN: 978-981-10-5517-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics