Skip to main content

Nitric Oxide as a Signaling Molecule in Plant-Bacterial Interactions

  • Chapter
  • First Online:
Book cover Plant Microbiome: Stress Response

Abstract

Nitric oxide (NO), evolved during various biological processes occuring in soil, bacteria, and plants, is acting as signaling molecule to trigger different essential pathways involved in plant-microbe interactions. Reactive nitrogen species (RNS) is present at every developmental stage of plants and plays very important role in their life cycle. This valuable molecule also involved in signaling in response to biotic and abiotic stress in plants. Moreover, NO is very important or said to be a central molecule of nitrogen cycle. The NO is produced during different biological nitrogen transformation processes. Remarkably, the essential information of NO production and its efficient relations with plant and microbes are poorly characterized. This chapter covers the different processes of NO production in soil, bacteria, and plants and their role in different physiological processes. In particular, the role of NO is addressed as a signaling molecule in plant-microbe interactions including legume-rhizobium symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alen’kina SA, Petrova LP, Sokolova MK, Chernyshova MP, Trutneva KA, Bogatyrev VA, Nikitina VE (2014) Comparative assessment of inductive effects of Azospirillum lectins with different antigenic properties on the signal systems of wheat seedling roots. Mikrobiologiia 83:336–345

    PubMed  Google Scholar 

  • Anderson IC, Poth M, Homstead J, Burdige D (1993) A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl Environ Microbiol 59:3525–3533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2014) Nitric oxide: an effective weapon of the plant or the pathogen? Mol Plant Pathol 15:406–416

    Article  CAS  PubMed  Google Scholar 

  • Asai S, Yoshioka H (2009) Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol Plant-Microbe Interact 22:619–629

    Article  CAS  PubMed  Google Scholar 

  • Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188:7344–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton L, McLay CDA, Schipper LA, Smith CT (1999) Annual denitrification rates in agricultural and forest soils: a review. Aust J Soil Res 37:1073–1093

    Article  Google Scholar 

  • Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A (2006) Nitric oxide is formed in Medicago truncatula-Sinorhizobium meliloti functional nodules. Mol Plant-Microbe Interact 19:970–975

    Article  CAS  PubMed  Google Scholar 

  • Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant-Microbe Interact 26:271–277

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Meyerho VPA, Taylor AR, Rost TL (2003) Root development and absorption of ammonium and nitrate from the rhizosphere. J Plant Growth Regul 21:416–431

    Article  Google Scholar 

  • Boddey RM, Baldani VL, Baldani JI, Döbereiner J (1986) Effect of inoculation of Azospirillum spp. on nitrogen accumulation by field-grown wheat. Plant Soil 95:109–121

    Article  Google Scholar 

  • Calcagno C, Novero M, Genre A, Bonfante P, Lanfranco L (2012) The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. Mycorrhiza 22:259–269

    Article  CAS  PubMed  Google Scholar 

  • Cam Y, Pierre O, Boncompagni E, Herouart D, Meilhoc E, Bruand C (2012) Nitric oxide (NO): a key player in the senescence of Medicago truncatula root nodules. New Phytol 196:548–560

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Rosazza JP (1994) A bacterial nitric oxide synthase from a Nocardia species. Biochem Biophys Res Commun 203:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Cohen MF, Yamasaki H, Mazzola M (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem 37:1215–1227

    Article  CAS  Google Scholar 

  • Cohen MF, Lamattina L, Yamasaki H (2010) Nitric oxide signaling by plant-associated bacteria. In: Hayat S (ed) Nitric oxide in plant physiology. Wiley-VCH, Weinheim, pp 161–172

    Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • Cueto M, Hernandez-Perera O, Martın R, Bentura ML, Rodrigo J, Lamas S, Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 398:159–164

    Article  CAS  PubMed  Google Scholar 

  • Cutruzzolà F (1999) Bacterial nitric oxide synthesis. Biochim Biophys Acta 1411:231–249

    Article  PubMed  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han et al (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Giudice J, Cam Y, Damiani I, Fung-Chat F, Meilhoc E, Bruand C, Brouquisse R, Puppo A, Boscari A (2011) Nitric oxide is required for an optimal establishment of the Medicago truncatula-Sinorhizobium meliloti symbiosis. New Phytol 191:405–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. PNAS 99:16314–16318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Autréaux B, Touati D, Bersch B, Latour JM, Michaud-Soret I (2002) Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc Natl Acad Sci 99:16619–16624

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu J, Chu X, Sun Y, Miao Y, Xu Y, Hu T (2015) Nitric oxide mediates 5-aminolevulinic acid-induced antioxidant defense in leaves of Elymus nutans Griseb. exposed to chilling stress. PLoS One 10:e0130367

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrido F, Henault C, Gaillard H, Perez S, Germon JC (2002) N2O and NO emissions by agricultural soils with low hydraulic potentials. Soil Biol Biochem 34:559–575

    Article  CAS  Google Scholar 

  • Ghiglione J-F, Gourbiere F, Potier P, Philippot L, Lensi R (2000) Role of respiratory nitrate reductase in ability of Pseudomonas fluorescens YT101 to colonize the rhizosphere of maize. Appl Environ Microbiol 66:4012–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giblin AE, Tobias CR, Song B, Weston N, Banta GT, Rivera-Monroy VH (2013) The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 26:124–131

    Article  Google Scholar 

  • Graziano M, Lamattina L (2005) Nitric oxide and iron in plants: an emerging and converging story. Trends Plant Sci 10:4–8

    Article  CAS  PubMed  Google Scholar 

  • Graziano M, Lamattina L (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. The Plant J 52:949–960

    Article  CAS  PubMed  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signalling. Science 302:100–103

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Google Scholar 

  • Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hérouart D, Baudouin E, Frendo P, Harrison J, Santos R, Jamet A, Van de Sype G, Touati D, Puppo. A (2002) Reactive oxygen species, nitric oxide, and glutathione: a key role in the establishment of the legume-Rhizobium symbiosis? Plant Physiol Biochem 40: 619–624

    Google Scholar 

  • Hichri I, Boscari A, Meilhoc E, Catalá M, Barreno E, Bruand C, Lanfranco L, Brouquisse R (2016) Nitric oxide: a multitask player in plant–microorganism symbioses. In: Lamattina L, Garcıa-Mata C (eds) Gasotransmitters in plants. Springer, Cham, pp 239–268

    Chapter  Google Scholar 

  • Hochgrafe F, Wolf C, Fuchs S, Liebeke M, Lalk M, Engelmann S, Hecker M (2008) Nitric oxide stress induces different responses but mediates comparable protein thiol protectionin Bacillus subtilis and Staphylococcus aureus. J Bacteriol 190:4997–5008

    Article  PubMed  PubMed Central  Google Scholar 

  • Horchani F, Prevot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A, Brouquisse R (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Hufton CA, Besford RT, Wellburn RA (1996) Effects of NO (+NO2) pollution on growth, nitrate reductase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter with CO2 enrichment. New Phytol 133:495–501

    Article  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2007) Agriculture, forestry and other land use. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IPCC guidelines for National Greenhouse gas inventories. IGES, Hayama

    Google Scholar 

  • Isner JC, Maathuis FJ (2011) Measurement of cellular cGMP inplant cells and tissues using the endogenous fluorescent reporter FlincG. Plant J 65:329–334

    Article  CAS  PubMed  Google Scholar 

  • Jian W, D-w Z, Zhu F, Wang S-x, Zhu T, X-j P, Zheng T, Feng H, Lin H-h (2015) Nitrate reductase-dependent nitric oxide production is required for regulation alternative oxidase pathway involved in the resistance to cucumber mosaic virus infection in Arabidopsis. Plant Growth Regul 77:99–107

    Article  CAS  Google Scholar 

  • Kartal B, Kuenen JV, Van Loosdrecht MCM (2010) Sewage treatment with anammox. Science 328:702–703

    Article  CAS  PubMed  Google Scholar 

  • Kuenen JG, Robertson LA (1994) Combined nitrification-denitrification processes. FEMS Microbiol Rev 15:109–117

    Article  CAS  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    Article  CAS  PubMed  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Leach J, Keyster M, Du Plessis M, Ludidi N (2010) Nitric oxide synthase activity is required for development of functional nodules in soybean. J Plant Physiol 167:1584–1591

    Google Scholar 

  • Mantelin S, Desbrosses G, Larcher M et al (2006) Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 223:591–603

    Article  CAS  PubMed  Google Scholar 

  • Maskall CS, Gibson JF, Dart PJ (1977) Electron-paramagnetic-resonance studies of leghaemoglobins from soya-bean and cowpea root nodules. Identification of nitrosyl-leghaemoglobin in crude leghaemoglobin preparations. Biochem J 167:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubara T, Mort T (1968) Studies on denitrification. IX. Nitrous oxide, its production and reduction to nitrogen. J Biochem 64:863–871

    Article  CAS  PubMed  Google Scholar 

  • Medinets S, Skiba U, Rennenberg H, Butterbach-Bahl K (2015) A review of soil NO transformation: associated processes and possible physiological significance on organisms. Soil Biol Biochem 80:92–117

    Article  CAS  Google Scholar 

  • Meier S, Madeo L, Ederli L, Donaldson L, Pasqualini S, Gehring C (2009) Deciphering cGMP signatures and cGMP-dependent pathways in plant defence. Plant Signal Behav 4:307–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesa S, Bedmar EJ, Chanfon A et al (2003) Bradyrhizobium japonicum NnrR, a denitrification regulator, expands the FixLJ-FixK2 regulatory cascade. J Bacteriol 185:3978–3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlyata M, Matsubara T, Mori T (1969) Studies on denitrification. XI Some properties of nitric oxide reductase. J Biochem 66:759–765

    Article  Google Scholar 

  • Moche M, Stremlau S, Hecht L, Gobel C, Feussner I, Stohr C (2010) Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. Planta 231:425–436

    Article  CAS  PubMed  Google Scholar 

  • Modolo LV, Augusto O, Almeida IMG, Magalhaes JR, Salgado I (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. Fed Eur Biochem Soc Lett 579:3814–3820

    Article  CAS  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact 21:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay P, Zheng M, Bedzyk LA, LaRossa RA, Storz G (2004) Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci 101:745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184

    Article  CAS  Google Scholar 

  • Murakami E, Nagata M, Shimoda Y, Kucho K, Higashi S, Abe M et al (2011) Nitric oxide production induced in roots of Lotusjaponicus by lipopolysaccharide from Mesorhizobium loti. Plant Cell Physiol 52:610–617

    Article  CAS  PubMed  Google Scholar 

  • Nagata M, Murakami EI, Shimoda Y, Shimoda-Sasakura F, Kucho KI, Suzuki A, Abe M, Higashi S, Uchiumi T (2008) Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Mol Plant Microb Interact 21:1175–1183

    Article  CAS  Google Scholar 

  • Nagata M, Hashimoto M, Murakami EI, Shimoda Y, Shimoda-Sasakura F, Kucho KI, Suzuki A, Abe M, Higashi S, Uchiumi T (2009) A possible role of class 1 plant hemoglobin at the early stage of legume-rhizobium symbiosis. Plant Signal Behav 4:202–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissue. Plant Cell Physiol 37:113–116

    Article  CAS  Google Scholar 

  • Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 1(35):279–286

    Article  Google Scholar 

  • Perchepied L, Balagué C, Riou C, Claudel-Renard C, Rivière N, Grezes-Besset B, Roby D (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant-Microbe Interact 23:846–860

    Article  CAS  PubMed  Google Scholar 

  • Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Plate L, Marletta MA (2012) Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network. Mol Cell 46:449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasul S, Dubreuil-Maurizi C, Lamotte O, Koen E, Poinssot B, Alcaraz G, Wendehenne D, Jeandroz S (2012) Nitric oxide production mediates oligogalacturonides-triggered immunity and resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ 35:1483–1499

    Article  CAS  PubMed  Google Scholar 

  • Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791

    Article  Google Scholar 

  • Sanchez C, Gates AJ, Meakin GE, Uchiumi T, Girard L, Richardson DJ, Bedmar EJ, Delgado MJ (2010) Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding. Mol Plant-Microbe Interact 23:702–711

    Article  CAS  PubMed  Google Scholar 

  • Schmidt I, Steenbakkers PJM, opden Camp HJM, Schmidt K, Jetten MSM (2004) Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J Bacteriol 186:2781–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T (2005) Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol 46:99–107

    Article  CAS  PubMed  Google Scholar 

  • Shimoda Y, Shimoda-Sasakura F, Kucho K, Kanamori N, Nagata M, Suzuki A, Abe M, Higashi S, Uchiumi T (2009) Overexpression of class 1 plant hemoglobin genes enhances symbiotic nitrogen fixation activity between Mesorhizobium loti and Lotus japonicus. Plant J 57:254–263

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, Dhankher OP (2015) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272

    PubMed  Google Scholar 

  • Sun H, Li J, Song W, Tao J, Huang S, Chen S, Zhang Y (2015) Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. J Exp Bot 66:2449–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Tufan Oz M, Eyidogan F, Yucel M, Oktem HA (2015) Functional role of nitric oxide under abiotic stress conditions. In: Khan MN (ed) Nitric oxide action in abiotic stress responses in plants. Springer International Publishing, Switzerland, pp 21–41

    Google Scholar 

  • Vaishnav A, Jain S, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2013) Effect of nitric oxide signaling in bacterial-treated soybean plant under salt stress. Arch Microbiol 195:571–577

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288

    Article  CAS  PubMed  Google Scholar 

  • Vieweg MF, Fruhling M, Quandt HJ, Heim U, Baumlein H, Puhler A, Kuster H, Andreas MP (2004) The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants. Mol Plant Microbe Interact 17:62–69

    Article  CAS  PubMed  Google Scholar 

  • Vitor SC, Duarte GT, Saviani EE, Vincentz MG, Oliveira HC, Salgado I (2013) Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae. Planta 238:475–486

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang Q, Tosa Y, Nakayashiki H, Mayama S (2005) Nitric oxide-overproducing transformants of Pseudomonas fluorescens with enhanced biocontrol of tomato bacterial wilt. J Gen Plant Pathol 71:33–38

    Article  CAS  Google Scholar 

  • Wellburn AR (1990) Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol 115:395–429

    Article  CAS  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6:177–183

    Article  CAS  PubMed  Google Scholar 

  • Wijler J, Delwiche CC (1954) Investigation on the denitrifylng process in soil. Plant Soil 5(155):169

    Google Scholar 

  • Wojtaszek P (2000) Nitric oxide in plants: to NO or not to NO. Phytochemistry 54:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  CAS  PubMed  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This compilation was done under the project entitled “Development of Methods for Detection of Dissimilatory Nitrate Reduction to Ammonium (DNRA) Process in Bacteria from Different Agroecosystems” operating at ICAR-NBAIM Mau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaishnav, A. et al. (2018). Nitric Oxide as a Signaling Molecule in Plant-Bacterial Interactions. In: Egamberdieva, D., Ahmad, P. (eds) Plant Microbiome: Stress Response. Microorganisms for Sustainability, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-5514-0_8

Download citation

Publish with us

Policies and ethics