Skip to main content

Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance

  • Chapter
  • First Online:
Plant Microbiome: Stress Response

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 5))

Abstract

The benefits of the green revolution in agriculture are over because current agricultural productivity has touched its limits of effectiveness in increasing plant yield. This problem is complicated by shrinking farmland, high labour costs and biotic and abiotic stresses. In fact, global agriculture and increased production would depend on the application and utilisation of microorganisms of agricultural importance, which will serve as an alternative strategy for higher crop productivity in the future. Efficient microbes play a key role in integrated management practices such as biotic and abiotic stresses and nutrient management to reduce chemical use and improve cultivar performance. On the other hand, high food demand and ever-increasing population increase pressure and urgency of how to exploit the microbiome for high crop yields and reduced losses caused by environmental stresses. This chapter highlights the importance of the designer plant microbiome, a strategy that may provide an effective and sustainable increase in crop yield and ultimately leads to food security by efficiently tackling biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aafi NE, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC 541. Int J Phytoremediation 14:26174

    Article  CAS  Google Scholar 

  • Adeleke RA, Cloete TE, Bertrand A, Khasa DP (2012) Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22:535–544

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Egamberdieva D (2013) Beneficial effects of plant growth-promoting rhizobacteria on improved crop production: prospects for developing economies. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 45–63

    Chapter  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Adhya TK, Kumar N, Reddy G, Podile AR, Bee H, Bindiya S (2015) Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr Sci 108:1280–1287

    CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Kuffner M, Sessitsch A (2011) Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel. J Hazard Mater 186:1568–1575

    Article  CAS  PubMed  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA, Johnson MTJ, Hastings AP, Maron JL (2013) A field experiment demonstrating plant life-history evolution and its co-evolutionary feedback to seed predator populations. Am Nat 181:S35–S45

    Article  PubMed  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Sk Z, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Ali S, Duan J, Charles TC, Glick BR (2014) A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia sp. J Theor Biol 343:193–198

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki GN, Ammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Arora DK, Saikia R, Dwievdi R, Smith D (2005) Current status, strategy and future prospects of microbial resource collections. Curr Sci 89:488–495

    Google Scholar 

  • Arora S, Patel PN, Vanza MJ, Rao GG (2014) Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8:1779–1788

    Article  Google Scholar 

  • Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.) Pedosphere 18:611–620

    Article  Google Scholar 

  • Arslan M, Imran A, Khan QM, Afzal M (2015) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res:1–15

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Atieno M, Herrmann L, Okalebo R, Lesueur D (2012) Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J Microbol Biotechnol 28:2541–2550

    Article  CAS  Google Scholar 

  • Babu AG, Reddy S (2011) Dual inoculation of arbuscular mycorrhizal and phosphate solubilizing fungi contributes in maintenance of plant health in fly ash ponds. Water Air Soil Pollut 219:3–10

    Article  CAS  Google Scholar 

  • Bainard LD, Koch AM, Gordon AM, Klironomos JN (2013) Growth response of crops to soil microbial communities from conventional monocropping and tree-based intercropping systems. Plant Soil 363:345–356

    Article  CAS  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  CAS  Google Scholar 

  • Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere is revisited: root microbiomics. Front Plant Sci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobero MT (2006) Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic (Amsterdam) 109:8–14

    Article  CAS  Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Bartels D, Hussain SS (2008) Current status and implications of engineering drought tolerance in plants using transgenic approaches. CAB Rev Persp Agr Vet Sci Nutri Natu Sci 3:020

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Ben Khaled L, Gomez AM, Ourraqi EM, Oihabi A (2003) Physiological and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings (Trifolium alexandrinum L.) Agronomie 23:571–580

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Zachow C, Müller H, Philipps J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656

    Article  Google Scholar 

  • Berg G, Grube M, Scholter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    PubMed  PubMed Central  Google Scholar 

  • Berg G, Rybakova D, Grube M, Koberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in Cyanobacteria. Res Microbiol 154:157–164

    Article  CAS  PubMed  Google Scholar 

  • Beskoski VP, Gojgic-Cvijovic G, Milic J, Ilic M, Miletic S, Solevic T, Vrvic MM (2011) Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil), a field experiment. Chemosphere 83:34–40

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Shrama KK (2007) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya PN, Sarmah SR, Dutta P, Tanti AJ (2015) Emergence in mapping microbial diversity in tea (Camellia sinensis L.) soil of Assam, North-East India: a novel approach. Eur J Biotechnol Biosci 3:20–25

    Google Scholar 

  • Bhattacharyya PN, Goswani MP, Bhattacharyya LH (2016) Perspective of beneficial microbes in agriculture under changing climatic scenario: a review. J Phytol 8:26–41

    Article  Google Scholar 

  • Bisht S, Pandey P, Kaur G, Aggarwal H, Sood A, Sharma S, Kumar V, Bisht NS (2014) Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur J Soil Biol 60:67–76

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver L, van Themaat Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Munch PC, Weiman A, Droge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:9909–9914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celebi SZ, Demir S, Celebi R, Durak ED, Yilmaz IH (2010) The effect of arbuscular mycorrhizal fungi (AMF) applications on the silage maize (Zea mays L.) yield in different irrigation regimes. Eur J Soil Biol 46:302–305

    Article  Google Scholar 

  • Chaitanya KV, Sundar D, Jutur PP, Reddy RA (2003) Water stress effects on photosynthesis in different mulberry cultivars. Plant Growth Regul 40:75–80

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISMI J 8:790–803

    Article  CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resistance to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–438

    Article  CAS  Google Scholar 

  • Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Auge RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82(2):273–281

    Article  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • de Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  PubMed  CAS  Google Scholar 

  • Doble M, Kumar A (2005) Biotreatment of industrial effluents. Elsevier, Butterworth-Heinemann, Oxford, pp 1–5

    Book  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? 4th international crop science congress. http://www.cropscience.org.au/icsc2004/poster/1/3/4/510_doddicref.htm. Accessed 17 June 2007

  • Duan J, Muller KM, Charles TC, Vesley S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:423

    Article  CAS  PubMed  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Renegal Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of leaf P-concentration of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Feng NX, Yu J, Zhao HM, Cheng YT, Mo CH, Cai QY, Li YW, Li H, Wng MH (2017) Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Sci Total Environ 583:352–368

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Giebler J, Wick LY, Schlosser D, Kästner M (2014) Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol 27:168–175

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ Microbiol 13:1790–1799

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizae in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviate salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2015) Phytoremediation. Beneficial plant-bacterial interactions. Springer International Publishing, Switzerland, pp 191–221

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2010) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Guimaraes AA, Jaramillo PMD, RSA N, Florentino LA, Silva KB, de Souza Moreira FM (2012) Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Appl Environ Microbiol 78:6726–6733

    Article  CAS  Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azotobacter) on growth of maize (Zea mays L.) and accumulation of Lead (Pb) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  • Hamel C, Vujanovic V, Jeannotte R, Nakano-Hylander A, St-Arnaud M (2005) Negative feedback on perennial crop: fusarium crown and root rot of asparagus is related to changes in soil microbial community structure. Plant Soil 268:75–87

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirtilla AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan MA (2013) Investigation on the nitrogen fixing Cyanobacteria (BGA) in rice fields of North-West region of Bangladesh. J Environ Sci Nat Resour 6:253–259

    Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hu S, Gu H, Cui C, Ji R (2016) Toxicity of combined chromium (VI) and phenanthrene pollution on the seed germination, stem lengths, and fresh weights of higher plants. Environ Sci Pollut Res 23:15227–15235

    Article  CAS  Google Scholar 

  • Hussain SS, Iqbal MT, Arif MA, Amjad M (2011) Beyond osmolytes and transcription factors: drought tolerance in plants via protective proteins and aquaporins. Biol Plant 55:401–413

    Article  CAS  Google Scholar 

  • Hussain SS, Raza H, Afzal I, Kayani MA (2012) Transgenic plants for abiotic stress tolerance: current status. Arch Agron Soil Sci 58:693–721

    Article  CAS  Google Scholar 

  • Hussain A, Abbas N, Arshad F, Akram M, Khan ZI, Ahmad K, Mansha M, Mirzaei F (2013) Effects of diverse doses of Lead (Pb) on different growth attributes of Zea-Mays L. Agric Sci 4:262–265

    CAS  Google Scholar 

  • Hussain SS, Asif MA, Sornaraj P, Ali M, Shi BJ (2016) Towards integration of system based approach for understanding drought stress in plants. In: Ahmad P, Rasool SP (eds) Water stress and crop plants: a sustainable approach. Elsevier, Atlanta, pp 227–247., (Chapter 16

    Chapter  Google Scholar 

  • Ijaz A, Imran A, Ul Haq MA, Khan QM, Afzal M (2016) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405:179–195

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, NY

    Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza: a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The mycota (vol. IX: fungal associations). Springer, Berlin

    Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jha P, Panwar J, Jha PN (2015) Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int J Environ Sci Technol 12:789–802

    Article  CAS  Google Scholar 

  • Jindal V, Atwal A, Sekhon BS, Rattan S, Singh R (1993) Effect of vesicular-arbuscular mycorrhiza on metabolism of moong plants under salinity. Plant Physiol Biochem 31:475–481

    CAS  Google Scholar 

  • Johnson NC, Graham JH (2013) The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil 363:411–419

    Article  CAS  Google Scholar 

  • Johnson D, Martin F, Cairney JWG, Anderson IC (2012) The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol 194:614–628

    Article  PubMed  Google Scholar 

  • Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microb Ecol 64:1008–1017

    Article  PubMed  Google Scholar 

  • Kathuria H, Giri J, Tyagi H, Tyagi AK (2007) Advances in transgenic rice biotechnology. Crit Rev Plant Sci 26:65–103

    Article  CAS  Google Scholar 

  • Khan A, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kidd P, Barcelo J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behavior at the root-soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Kim S, Lowman S, Hou G, Nowak J, Flinn B, Mei C (2012) Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnol Bioguels 5:37

    CAS  Google Scholar 

  • Kim YC, Glick B, Bashan Y, Ryu CM (2013) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress. Springer Verlag, Berlin

    Google Scholar 

  • Kohler J, Hernandez JA, Caravaca F, Rolden A (2008) Plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukla M, Płociniczak T, Piotrowska-Seget Z (2014) Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere 117:40–46

    Article  CAS  PubMed  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    Article  CAS  PubMed  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci U S A 109:14058–14062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeis SL (2015) Greater than the sum of their parts: characterizing plant microbiomes at the community level. Curr Opin Plant Biol 24:82–86

    Article  CAS  PubMed  Google Scholar 

  • Lebeis SL, Rott M, Dangl JL, Schulze-Lefert P (2012) Culturing a plant microbiome community at the cross-Rhodes. New Phytol 196:341–344

    Article  PubMed  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Ahn PI, Sy S, Lee SY, Seo MW, Kim S, Sy P, Lee YH, Kang S (2010) Pseudomonas sp. LSW25R antagonistic to plant pathogens promoted plant growth and reduced blossom red rot of tomato roots in a hydroponic system. Eur J Plant Pathol 126:1–11

    Article  Google Scholar 

  • Leite MCBS, de Farias ARB, Freire FJ, Andreote FD, Sobral JK, Freire MBGS (2014) Isolation, bioprospecting and diversity of salt-tolerant bacteria associated with sugarcane in soils of Pernambuco, Brazil. Rev Bras Eng Agrıc Amb 18:S73–S79

    Article  Google Scholar 

  • Leveau JHJ, Uroz S, de Boer W (2010) The bacterial genus Collimonas: mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol 12:281–292

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo SL, Chen L, Chen JI, Xiao X, Xu TY, Wan Y, Rao C, Liu CB, Liu Y, Lai C, Zeng GM (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral-microbe interactions: biotechnological potential of bio-weathering. J Biotechnol 157:473–481

    Article  CAS  PubMed  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed Res 2013:248078

    Google Scholar 

  • Marasco R, Rolli E, Attoumi B, Vigani G, Mapelli F, Borin S, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marasco R, Rolli E, Vigani G, Borin S, Sorlini C, Ouzari H, Zocchi G, Daffonchio D (2013) Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signal Behav 8:e26741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M, Bariselli P, Reddy M, Cherif A, Tsiamis G, Borin S, Daffonchio D (2016) Salicornia strobilacea (synonym of Halocnemum strobilaceum) growth under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front Microbiol 7:1286

    Article  PubMed  PubMed Central  Google Scholar 

  • Marquez LM, Redman RS, Rodriguez RJ, Roosinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis–model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought tolerant or drought sensitive Glomus species. Microb Ecol 54:543–552

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  CAS  PubMed  Google Scholar 

  • Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mengual C, Schoebitz M, Azcón R, Roldán A (2014) Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. J Environ Manag 134:1–7

    Article  CAS  Google Scholar 

  • Miao B, Stewart BA, Zhang F (2011) Long-term experiments for sustainable nutrient management in China. A review. Agron Sustain Dev 31:397–414

    Article  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, London, pp 3–18

    Chapter  Google Scholar 

  • Miller JB, Oldroyd GD (2012) The role of diffusible signals in the establishment of rhizobial and mycorrhizal symbioses. In: Perotto S, Baluška F (eds) Signaling and communication in plant symbiosis. Springer, Berlin, pp 1–30

    Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Mishra S, Selvakumar G, Kundub S, Gupta HS (2009) Enhanced soybean (Glycine max L) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric Scand Sect B Soil Plant Sci 59:189–196

    CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Naveed M, Hussain B, Zahir A, Mitter B, Sessitsch A (2014a) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014b) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Nonnoi F, Chinnaswamy A, García de la Torre VS, Coba de la Peña T, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes Medicago sp. and Trifolium sp. growing in mercury-contaminated soils. Appl Soil Ecol 61:49–59

    Article  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738

    Article  PubMed  CAS  Google Scholar 

  • Pandey VC (2012) Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicol Environ Saf 82:8–12

    Article  CAS  PubMed  Google Scholar 

  • Panke-Buisse K, Poole A, Goodrich J, Ley R, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989

    Article  CAS  PubMed  Google Scholar 

  • Park JD (2010) Heavy metal poisoning. Hanyang Med Rev 30:319–325

    Article  CAS  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Montano F, Alías-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  CAS  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Cano C, Bago A, Ruiz-Lozano JM (2006) Identification of a gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding for a 14–3-3 protein that is upregulated by drought stress during the AM symbiosis. Microb Ecol 52:575–582

    Article  PubMed  Google Scholar 

  • Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, Jiang JH (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth promoting activity under salt stress. Plant Soil 374:753–766

    Article  CAS  Google Scholar 

  • Qiu M, Li S, Zhou X, Cui X, Vivanco J, Zhang N, Shen Q, Zhang R (2014) De-coupling of root-microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biol Fertil Soils 50:217–224

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-produing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rasche F, Velvis H, Zachow C, Berg G, van Elsas JD, Sessitsch A (2006) Impact of transgenic potatoes expressing antibacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566

    Article  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali S, Gerbino R, Cei FP, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved resistance to drought in prompted by the root-associated microbiome as a water stress dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  • Ruiz KB, Biondi S, Martínez EA, Orsini F, Antognoni F, Jacobsen SE (2015) Quinoa – a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems 150:357–371

    Article  Google Scholar 

  • Salvioli A, Bonfante P (2013) Systems biology and “omics” tools: a cooperation for next-generation mycorrhizal studies. Plant Sci 203:107–114

    Article  PubMed  CAS  Google Scholar 

  • Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10:130–144

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Kishore N, Venkateswarlu B (2009) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseed Res 26:600–601

    Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswaralu B (2010) Effect of plant growth promoting Pseudomonas spp. On compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Schaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217

    Article  CAS  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, Ver Loren van Themaat E, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci U S A 111:585–592

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe M, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis under drought and cold stresses by using a full length cDNA microarray. Plant Cell 13:62–72

    Article  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high salinity stresses using full length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the north western Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239245

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2010a) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 5:1129–1135

    Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS (2010b) Growth promotion of wheat seedlings by Exiguobacterium acetylicum 1P (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Ind J Microbiol 50:50–56

    Article  CAS  Google Scholar 

  • Shabala S, Hariadi Y, Jacobsen SE (2013) Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. J Plant Physiol 170:906–914

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguch-Shinozaki K (2000) Molecular responses to dehydration and low temperature: difference and cross talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shirley M, Avoscan L, Bernuad E, Vansuyt G, Lemanceau P (2011) Comparison of iron acquisition from Fe-pyoverdine by strategy I and strategy II plants. Botany 89:731–735

    Article  CAS  Google Scholar 

  • Shridhar BS (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52

    Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization and use for plant growth promotion under salt stress, of ACC deaminase producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Kaur T, Kaur S, Manhas RK, Kaur A (2016) Insecticidal potential of an endophytic Cladosporiumvelox against Spodoptera litura mediated through inhibition of alpha glycosidases. Pestic Biochem Physiol 131:46–52

    Article  CAS  PubMed  Google Scholar 

  • Sloan SS, Lebeis S (2015) Exercising influence: distinct biotic interactions shape root microbiome. Curr Opin Plant Biol 26:32–36

    Article  PubMed  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Srivastava CS (2008) Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 56:453–457

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Bakker MG, Badri DV, Manter DK, Vivanco JM (2013) Relationships between Arabidopsis genotype-specific biomass accumulation and associated soil microbial communities. Botany-Botanique 91:123126

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thao NP, Tran LS (2016) Enhancement of plant productivity in the post genomic era. Curr Genomics 17:295–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clement C, Barka EA (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant-Microbe Interact 25:241–249

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Timmusk K, Behers L (2013) Rhizobacterial plant drought stress tolerance enhancement: towards sustainable water resource management and food security. J Food Security 1:6–9

    Google Scholar 

  • Timmusk S, El-Daim IA, Cpolovici L, Tanilas T, Kannaste A, Behers L, Nevo E, Seisenbaeva G, Stenstrom E, Niinemets U (2014) Drought-tolerance of wheat improved y rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timmusk S, Behers L, Muthoni J, Aronsson AC (2017) Perspectives and challenges of microbe application for crop improvement. Front Plant Sci 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum L.) and chemical diversity in rhizosphere enhance plant growth. Biology Fert Soils 47:907–916

    Article  CAS  Google Scholar 

  • Tkacz A, Poole P (2015) Role of root microbiota in plant productivity. J Exp Bot 66:2167–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tkacz A, Cheema J, Chandra G, Grant A, Poole PS (2015) Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J 9:2349–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res 2013:e863240

    Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria from rhizospheric soil of wheat under saline conditions. Curr Microbiol 59:489–496

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chembiochem 10:205–216

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen H (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:1–7

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nusrulhaq Boyce A (2016) Role of plant growth-promoting rhizobacteria in agricultural sustainability: a review. Molecules 21:573

    Article  CAS  Google Scholar 

  • Velazquez-Hernandez ML, Baizabal-Aguirre VM, Cruz-Vazquez F, Trejo-Contreras MJ, Fuentes-Ramırez LE, Bravo-Patino A, Valdez-Alarcon JJ (2011) Gluconacetobacter diazotrophicus levansucrase is involved in tolerance to NaCl, sucrose and desiccation, and in biofilm formation. Arch Microbiol 193:137–149

    Article  CAS  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 219:1–14

    Article  CAS  Google Scholar 

  • Wang HG, Zhnag XZ, Li H, He HB, Fang CX, Zhang AJ, Li QS, Chen RS, Guo XK, Lin HF, Wu LK, Lin S, Chen T, Lin RY, Peng XX, Lin WX (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  PubMed  Google Scholar 

  • Waqas M, Khan AL, Hamayun M, Shahzad R, Kim YH, Choi KS, Lee IJ (2015) Endophytic infection alleviates biotic stress in sunflower through regulation of defense hormones, antioxidants and functional amino acids. Eur J Plant Pathol 141:803–824

    Article  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faij A (2011) The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci 4:2669–2681

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soil: a review of sources, chemistry, risks and best available strategies for bioremediation. ISRN Ecol 2011:402647

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediation 14:89–99

    Article  PubMed  Google Scholar 

  • Yang AZ, Akhtar SS, Amjad M, Iqbal S, Jacobsen SE (2016a) Growth and physiological responses of quinoa to drought and temperature stress. J Agron Crop Sci 202:421–589

    Article  CAS  Google Scholar 

  • Yang AZ, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen SE (2016b) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculum. Funct Plant Biol 43:632–642

    Article  CAS  Google Scholar 

  • Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA, Schmidt S, Hugenholtz P (2016) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18:1338–1135

    Article  PubMed  Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plans under salt stress. Ann Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Zarei M, Wubet T, Schäfer SH, Savaghebi GR, Jouzani GS, Nekouei MK (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Lynch DH, Smith DL (1995) Impact of low root temperatures in soybean [Glycine max (L.) Merr.] on nodulation and nitrogen fixation. Environ Exp Bot 35:279–285

    Article  Google Scholar 

  • Zhang F, Dashti N, Hynes R, Smith DL (1996) Plant growth promoting rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann Bot 77:453–460

    Article  Google Scholar 

  • Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X (2009a) Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed 23:289–298

    Article  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Pare PW (2009b) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Le Velly M, Rhind SM, Kyle CE, Hough RL, Duff EI, McKenzie C (2015) A study on temporal trends and estimates of fate of Bisphenol A in agricultural soils after sewage sludge amendment. Sci Total Environ 515–516:1–11

    PubMed  Google Scholar 

  • Zhao S, Zhou N, Zhao ZY, Zhang K, Wu GH, Tian CY (2016) Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europea and evaluating their promoting activity under salt stress. Curr Microbiol 73:574–581

    Article  CAS  PubMed  Google Scholar 

  • Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, Zhao LX (2016) Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 66:529–542

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler M, Engel M, Welzl G, Schloter M (2013) Development of a simple root model to study the effects of single exudates on the development of bacterial community structure. J Microbiol Methods 94:30–36

    Article  PubMed  Google Scholar 

  • Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9

    Article  Google Scholar 

  • Zuppinger-Dingley D, Schmid B, Petermann JS, Yadav V, De Deyn GB, Flynn DF (2014) Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515:108–111

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Sarfraz Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S.S., Mehnaz, S., Siddique, K.H.M. (2018). Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. In: Egamberdieva, D., Ahmad, P. (eds) Plant Microbiome: Stress Response. Microorganisms for Sustainability, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-5514-0_2

Download citation

Publish with us

Policies and ethics