Skip to main content

Microbial Siderophores in Metal Detoxification and Therapeutics: Recent Prospective and Applications

  • Chapter
  • First Online:
Plant Microbiome: Stress Response

Abstract

Siderophores are small molecular weight metal scavengers which are released by plants, plant growth-promoting bacterial strains and fungi into the rhizosphere. These molecules have been widely reported as Fe3+ carriers under poor iron ion mobilization; however, recently they are being exposed for affinity towards other metal ions such as copper, zinc, etc. highlighting their phytoremedial potential. They are also effective anti-pathogenic agents, important signals towards oxidative stress and new age therapeutics. To understand the mechanism by which these moieties solubilize metal ions at both genetic and protein levels is the crux of our studies as these are extremely versatile molecules having myriad applications in the fields of agriculture, physiology, drug therapy, diagnosis, etc. Additionally, this paper also covers the biosynthesis and classification of microbial siderophores and their roles in plant and animal physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard ME, Chen KW, Sweet MJ, Watts RE, Schroder K, Schembri MA (2013) An antioxidant role for catecholate siderophores in Salmonella. Biochem J 454(3):543–549

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2014) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.11.020

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Micro Biotechnol 7(3):196–208

    Article  CAS  Google Scholar 

  • Akafia MM, Harrington JM, Bargar JR, Duckworth OW (2014) Metal oxyhydroxide dissolution as promoted by structurally diverse siderophores and oxalate. Geochim Cosmochim Acta 141:258–269

    Article  CAS  Google Scholar 

  • Al-Fakih AA (2014) Overview on the fungal metabolites involved in mycopathy. Open J Med Microbiol 4:38–63

    Article  Google Scholar 

  • Ali SS, Vidhale NN (2013) Bacterial siderophores and their application: a review. Int J Curr Microbiol App Sci 2(12):303–312

    Google Scholar 

  • Ali T, Bylund D, Essén SA, Lundström US (2011) Liquid extraction of low molecular mass organic acids and hydroxamate siderophores from boreal forest soil. Soil Biol Biochem 43:2417–2422

    Article  CAS  Google Scholar 

  • Allred BE, Rupertb PB, Gaunya SS, Ana DD, Ralstonc CY, Hoehnea MS, Strongb RK, Abergela RJ (2015) Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc Natl Acad Sci 112(33):10342–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin SA, Küpper FC, Green DH, Harris WR, Carrano CJ (2007) Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate Gymnodinium catenatum. J Am Chem Soc 129(3):478–479

    Article  CAS  PubMed  Google Scholar 

  • Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot 66(11):3001–3010

    Article  CAS  PubMed  Google Scholar 

  • Aznar A, Chen NW, Thomine S et al (2015) Immunity to plant pathogens and iron homeostasis. Plant Sci 240:90–97

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergeron RJ, Wiegand J, McManis JS, Bharti N (2014) Desferrithiocin: a search for clinically effective iron chelators. J Med Chem 57(22):9259–9291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut 6:261–279

    Article  CAS  Google Scholar 

  • Braud A, Jézéquel K, Lebeau T (2007) Impact of substrates and cell immobilization on siderophore activity by Pseudomonads in a Fe and/or Cr, Hg, Pb containing-medium. J Hazard Mater 144(1–2):229–239

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Jézéquel K, Bazot S et al (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286

    Article  PubMed  Google Scholar 

  • Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E (2009) Sideromycins: tools and antibiotics. Biometals 22(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler A, Theisen RM (2010) Iron(III)-siderophore coordination chemistry: reactivity of marine siderophores. Coord Chem 254(3–4):288–296

    Article  CAS  Google Scholar 

  • Buyer JS, Lorenzo VDE, Neilands JB (1991) Production of the siderophore aerobactin by a halophilic Pseudomonas. Appl Environ Microbiol 57(8):2246–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Kozo A, Lumyong S (2008) Screening of rhizobacteria for their plant growth promoting activities. J KMITL Sci Tech 8:18–23

    Google Scholar 

  • Chaturvedi KS, Henderson JP (2014) Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol 4:3. https://doi.org/10.3389/fcimb.2014.00003

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi KS, Hung CS, Giblin DE, Urushidani S, Austin AM, Dinauer MC, Henderson JP (2014) ACS Chem Biol 9:551–561. [PubMed: 24283977]

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chao Y, Li Y, Lin Q, Bai J, Tang L, Wang S, Ying R, Qiua R (2016) Survival strategies of the plant-associated bacterium Enterobacter sp. Strain EG16 under cadmium stress. Appl Environ Microbiol 82(6):1734–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish AS, Page WJ (1998) The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology 144(7):1747–1754

    Article  CAS  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deicke M, Bellenger JP, Wichard TJ (2013) Direct quantification of bacterial molybdenum and iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry. Chromatogr A 1298:50–60

    Article  CAS  Google Scholar 

  • Duckworth OW, Akafia MM, Andrews MY, Bargar JR (2014) Siderophore-promoted dissolution of chromium from hydroxide minerals. Environ Sci Process Impact 16:1348–1359

    Article  CAS  Google Scholar 

  • Farrell DH, Mikesell P, Actis LA, Crosa JH (1990) A regulatory gene, angR, of the iron uptake system of Vibrio anguillarum: similarity with phage P 22 cro and regulation by iron. Gene 86:45–51

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Sci. https://doi.org/10.6064/2012/963401

  • Gratão PL, Prasad MNV, Cardoso PF et al (2005) Phytoremediation: green technology for the cleanup of toxic metals in the environment. Braz J Plant Physiol 17(1):53–64

    Article  Google Scholar 

  • Gregory JA, Li F, Tomosada LM, Cox CJ (2012) Topol AB, algae – produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 7(5):371–379

    Article  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    Google Scholar 

  • Harrington JM, Parker DL, Bargar JR et al (2012) Structural dependence of Mn complexation by siderophores: donor group dependence on complex stability and reactivity. Geochim Cosmochim Acta 88:106–119

    Article  CAS  Google Scholar 

  • He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207

    Article  PubMed  PubMed Central  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    Article  CAS  PubMed  Google Scholar 

  • Höfte M (1993) Classes of microbial siderophores. In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms. Academic, San Diego, pp 3–26

    Google Scholar 

  • Holinsworth B, Martin JD (2009) Siderophore production by marine-derived fungi. Biometals 22(4):625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10(8):525–537

    Article  CAS  PubMed  Google Scholar 

  • Husen E (2003) Screening of soil bacteria for plant growth promotion activities in vitro. Indones J Agric Sci 4(1):27–31

    Article  Google Scholar 

  • Johnstone TC, Nolana EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44(14):6320–6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones CM, Wells RM, Madduri AV et al (2014) Self-poisoning of mycobacterium tuberculosis by interrupting siderophore recycling. Proc Natl Acad Sci U S A 111(5):1945–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi H, Dave R, Venugopalan VP (2014) Pumping iron to keep fit: modulation of siderophore secretion helps efficient aromatic utilization in Pseudomonas putida KT2440. Microbiology 160:1393–1400

    Article  CAS  PubMed  Google Scholar 

  • Keating T, Walsh C (1999) Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr Opin Chem Biol 3:598–606

    Article  CAS  PubMed  Google Scholar 

  • Kenney GE, Rosenzweig AC (2012) Chemistry and biology of the copper chelator methanobactin. ACS Chem Biol 7:260–268

    Article  CAS  PubMed  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Kraemer SM, Crowley D, Kretzschmar R (2006) Siderophores in plant iron acquisition: geochemical aspects. Adv Agron 91:1–46

    Article  CAS  Google Scholar 

  • Kurth C, Kage H, Nett (2016) Siderophores as molecular tools in medical and environmental applications. Org Biomol Chem 14:8212–8227

    Article  CAS  PubMed  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U et al (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 99(10):7072–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lautru S, Challis GL (2004) Substrate recognition by non-ribosomal peptide synthetase multi-enzymes. Microbiology 150:1629–1636

    Article  CAS  PubMed  Google Scholar 

  • Leong SA, Neilands JB (1982) Siderophore production by phytopathogenic microbial species. Arch Biochem Biophys 281:351–359

    Article  Google Scholar 

  • Liu W, Wang Q, Hou J, Tu C, Luo Y, Christie P (2016) Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp.D5A. Sci Rep 6:26710. https://doi.org/10.1038/srep26710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Prasad MN, Rajkumar M et al (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  • Manwar AV, Khandelwal SR, Chaudhari BL, Kothari RM, Chincholkar SB (2001) Generic technology for assured biocontrol of groundnut infections leading to its yield improvement. Chem Weekly 6(26):157–158

    Google Scholar 

  • Meneely KM, Lamb AL (2007) Biochemical characterization of an FAD-dependent monooxygenase, the ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism. Biochemistry 46:11930–11937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 3:413–451

    Article  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci doi. https://doi.org/10.3389/fpls.2016.00303

  • Mossialos D, Ochsner U, Baysse C, Chablain P, Pirnay JP, Koedam N (2002) Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 45(6):1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Munzinger M, Taraz K, Budzikiewicz H (1999) SS-rhizoferrin (enantio-rhizoferrin) – a siderophore of Ralstonia (Pseudomonas) pickettii DSM 6297 – the optical antipode of R, R-rhizoferrin isolated from fungi. Biometals 12:189–193

    Article  CAS  Google Scholar 

  • Murata Y, Itoh Y, Iwashita T, Namba K (2015) Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments. PLoS One 10(3):e0120227. https://doi.org/10.1371/journal.pone.0120227

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadal-Jimenez P, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol 76(1):46–65

    Article  Google Scholar 

  • Naka H, Liu M, Actis LA, Crosa JH (2013) Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution. Biometals 26(4):537–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 70(45):26723–26726

    Article  Google Scholar 

  • Palmer CM, Hindt MN, Schmidt H et al (2013) MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet 9:e1003953

    Article  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Gupta DB, Dass S, Kumar A, Pandey A, Chakraborty S, Chakraborty N (2016) Chickpea Ferritin CaFer1 participates in oxidative stress response, and promotes growth and development. Sci Rep 6:31218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prentice AM, Ghattas H, Cox SE (2007) Host-pathogen interactions: can micronutrients tip the balance? J Nutr 137(5):1334–1337

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MN et al (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biochem Sci 28(3):142–149

    CAS  Google Scholar 

  • Raymond KN, Emily AD, Sanggoo SK (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci U S A 100(7):3584–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Ross-Gillespie A, Weigert M, Brown SP et al (2014) Gallium-mediated siderophore quenching as an evolutionarily robust antibacterial treatment. Evol Med Public Health 1:18–29

    Article  Google Scholar 

  • Sah S, Singh R (2015) Siderophore: structural and functional characterisation – a comprehensive review. Agriculture (Poľnohospodárstvo) 61(3):97–114

    Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109(10):4580–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Searle LJ, Méric G, Porcelli I, Sheppard SK, Lucchini S (2015) Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli. PLoS One 10(3):e0117906. https://doi.org/10.1371/journal.pone.0117906

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35(7):887–894

    Article  CAS  Google Scholar 

  • Singh A, Singh SS, Pandey PC, Mishra AK (2010) Attenuation of metal toxicity by frankial siderophores. Toxicol Environ Chem 92(7):1339–1346

    Article  CAS  Google Scholar 

  • Tang HC, Chang PC, Chen YC (2016) Iron depletion strategy for targeted cancer therapy: utilizing the dual roles of neutrophil gelatinase-associated lipocalin protein. J Mol Model 22(1):1–5

    Article  Google Scholar 

  • Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact 20(4):441–447

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Podila GK (2005) Siderophore their biotechnological application. Biotech Appl Microbes:177–199

    Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A Juss. J Basic Microbiol 51(5):550–556

    Article  CAS  PubMed  Google Scholar 

  • Ward TR, Reas L, Serge P, Parel JE, Philipp G, Peter B, Chris O (1999) An iron-based molecular redox switch as a model for iron release from enterobactin via the salicylate binding mode. Inorg Chem 38(22):5007–5017

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    Article  CAS  PubMed  Google Scholar 

  • Wittmann S, Heinisch L, Scherlitz-Hofmann INA, Stoiber T, Dorothe AF, Möllmann U (2001) Catecholates and mixed catecholate hydroxamates as artificial siderophores for mycobacteria. Biometals 17:53–64

    Article  Google Scholar 

  • Wyatt MA, Johnston CW, Magarvey NA (2014) Gold nanoparticle formation via microbial metallophore chemistries. J Nanopart 16:2212. https://doi.org/10.1007/s11051-013-2212-2

    Article  Google Scholar 

  • Yamamoto S, Chowdhury MAR, Kuroda M, Nakano T, Koumoto Y, Shinoda S (1991) Further study on polyamine compositions in Vibrionaceae. Can J Microbiol 37:148–153

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47(2):138–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Resham Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R. et al. (2018). Microbial Siderophores in Metal Detoxification and Therapeutics: Recent Prospective and Applications. In: Egamberdieva, D., Ahmad, P. (eds) Plant Microbiome: Stress Response. Microorganisms for Sustainability, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-5514-0_15

Download citation

Publish with us

Policies and ethics