Skip to main content

Potential of Endophytic Bacteria in Heavy Metal and Pesticide Detoxification

  • Chapter
  • First Online:
Plant Microbiome: Stress Response

Abstract

Heavy metal (HM) and pesticide contamination in the soil is of major concern in the present era. Both of these contaminants disturb soil microflora and adversely affect the growth and development of plants. The soil contamination can be reduced by ecofriendly techniques. The use of endophytic bacteria (EB) in the rhizosphere is one such technique where EB reduce the HM and pesticide contaminants in the soil. They can efficiently reduce the HM and pesticide concentration in the soil by enhancing the phytoremediating efficiency of plants. Moreover, EB can also degrade the pesticides in soil by producing various hormones and enzymes which ultimately result in promotion of the growth of plants. Hence, keeping in mind the efficiency of EB in reducing the HM and pesticide contamination in soil, the present review gives a detailed view of HM and pesticide detoxification by these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaye DA, Lawlor K, Hirsch PR, Brookes PC (2005) Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur J Soil Sci 56:93–102

    Article  CAS  Google Scholar 

  • Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, Rangel WM, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1. https://doi.org/10.1186/s40538-015-0051-3

    Article  CAS  Google Scholar 

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of l-aminocyclopropanecarboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci U S A 76:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Khan MS (2009) Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12:217–226

    Article  Google Scholar 

  • Ahmad S, Tabassum H, Alam A (2016) Role of microbial bioremediation of heavy metal from contaminated soils: an update. Int J Biol Pharm Allies Sci 5(7):1605–1622

    Google Scholar 

  • Aksoy O, Dane F (2007) The effects of fusillade (Fluazifop-p-butyl) on root and shoot growth of lentil (Lens culinaris Medik.) seedlings. J Appl Environ Biol Sci 1(3):9–13

    CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144

    Article  CAS  PubMed  Google Scholar 

  • Arao T, Ishikawa S, Murakam IM (2010) Heavy metal contamination of agricultural soil and counter measures in Japan. Paddy Water Environ 8(3):247–257

    Article  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque A, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol. 6 8(7):1247–1252

    CAS  Google Scholar 

  • Babu NG, Sarma PA, Attitalla IH, Murthy SDS (2010) Effect of selected heavy metal ions on the photosynthetic electron transport and energy transfer in the thylakoid membrane of the cyanobacterium, Spirulina platensis. Acad J Plant Sci 3:46–49

    Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2004) Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant Soil 262:373–381

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Benavides MP, Tomaro ML (2005) Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant Soil 27:343–353

    Article  CAS  Google Scholar 

  • Ball JW, Izbick JA (2004) Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl Geochem 19:1123–1135

    Article  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Bottini R, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Belimov AA, Safronova VI, Mimura T (2002) Response of spring rape to inoculation with plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can J Microbiol 48:189–199

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Boddey LH, Hungria M (1994) Classificacao de estirpes de Bradyrhizobium japonicum em genotipo I e II baseada nas caracterısticas fenotıpicas e genotıpicas. In: Simposio Brasileiro Sobre Microbiologia de Solo, Londrina. Resumos. LAPAR, Londrina, p 66

    Google Scholar 

  • Bollag JM, Dec J (1998) Use of plant material for the removal of pollutants by polymerization and binding to humic substances, Tech. Rep. R-82092. Center for Bioremediation and Detoxification Environmental Resources Research Institute The Pennsylvania State University, University Park

    Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    Article  CAS  PubMed  Google Scholar 

  • Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    Article  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess JL, Bernstein JN, Hurlbut K (1994) Aldicarb poisoning. A case report with prolonged cholinesterase inhibition and improvement after pralidoxime therapy. Arch Intern Med 154(2):221–224

    Article  CAS  PubMed  Google Scholar 

  • Camacho JR, Armienta MA (2000) Natural chromium contamination of groundwater at Leon Valley Mexico. J Geochem Explor 68:167–181

    Article  Google Scholar 

  • Campbell PGC (2006) Cadmium-A priority pollutant. Environ Chem 3:387–388

    Article  CAS  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, Jucoski GO, Battisti V, Redin M, Linares CEB, Dressler VL, Flores MM, Nicoloso FT, Morsch VM, Schetinger MRC (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1106

    Article  CAS  PubMed  Google Scholar 

  • Cempel M, Nikel G (2006) Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud 15:375–382

    CAS  Google Scholar 

  • Chatterjee C, Gopal R, Dube BK (2006) Physiological and biochemical responses of French bean to excess cobalt. J Plant Nutr 29:127–136

    Article  CAS  Google Scholar 

  • Chaudri AM, McGrath SP, Gibbs P, Chambers BC, Carlton-Smith C, Bacon J, Campbell C, Aitken A (2008) Population size of indigenous Rhizobium leguminosarum biovar trifolii in long-term field experiments with sewage sludge cake, metal-amended liquid sludge or metal salts: effects of zinc, copper and cadmium. Soil Biol Biochem 40:1670–1680

    Article  CAS  Google Scholar 

  • Chen WM, Tang YQ, Mori K, Wu XL (2012) Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol 15:99–110

    Article  Google Scholar 

  • Chen B, Shen J, Zhang X, Pan F, Yang X, Feng Y (2014) The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 9(9):e106826. https://doi.org/10.1371/journal.pone.0106826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Clive DS (2003) The pesticide manual, 13th edn. BCPC Publications, Farnham, p 1344. ISBN 978-1-90139613-3

    Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F et al (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M et al (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189

    Article  CAS  Google Scholar 

  • Coutinho BG, Licastro D, Mendonça-Previato L, Cámara M, Venturi V (2015) Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant Microbe Interact 28:10–21

    Article  PubMed  CAS  Google Scholar 

  • Cursino L, Mattos SV, Azevedo V, Galarza F, Bücker DH, Chartone-Souza E, Nascimento AM (2000) Capacity of mercury volatilization by mer (from Escherichia coli) and glutathione S-transferase (from Schistosoma mansoni) genes cloned in Escherichia coli. Sci Total Environ 261(1):109–113

    Article  CAS  PubMed  Google Scholar 

  • Dazy M, Masfaraud JF, Ferard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75:297–302

    Article  CAS  PubMed  Google Scholar 

  • de Boer TE, Tas N, Braster M, Temminghoff EJ, Roling WF, Roelofs D (2012) The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation. Environ Sci Technol 46(1):60–68

    Article  PubMed  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162

    Article  PubMed  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Desaint S, Hartmann A, Parekh NR, Fournier JC (2000) Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiol Ecol 34:173–180

    Article  CAS  PubMed  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  CAS  Google Scholar 

  • Dubey KK, Fulekar MH (2011) Effect of pesticides on the seed germination of Cenchrus setigerus and Pennisetum pedicellatum as monocropping and co-cropping system: implications for Rhizospheric bioremediation. Rom Biotechnol Lett 16(1):5909–5918

    CAS  Google Scholar 

  • El-Banna N, Winkelmann G (1988) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–78

    Article  Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soil and groundwater. Environ Sci 412:1–45

    Google Scholar 

  • Evans ML (1984) Functions of hormones at the cellular level of organization. In: Scott TK (ed) Hormonal regulation of development, II. Springer, Berlin, pp 23–62. ISBN 10:0387101969

    Chapter  Google Scholar 

  • Fatima K, Imran A, Amin I, Khan QM, Afzal M (2016) Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil contaminated soil. Environ Sci Pollut Res 23:6188–6196

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2007) Plant growth promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L). World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-007-9591-4

  • Flores F, Collier CJ, Mercurio P, Negri AP (2013) Phytotoxicity of four photosystem II herbicides to tropical seagrasses. PLoS One 8(9):e75798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari MK (ed) Bacteria in agrobiology: plant nutrient management. Springer-Verlag, Berlin, pp 17–46

    Chapter  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  PubMed  Google Scholar 

  • Gianfreda L, Xu F, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–26

    Article  CAS  Google Scholar 

  • Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2:1043–1055

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. Article ID 963401. https://doi.org/10.6064/2012/963401

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer, Heidelberg

    Book  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhyzobacterium Pseudomonas putidaGR 12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gopi R, Jaleel CA, Sairam R, Lakshmanan GM, Gomathinayagam M, Panneerselvam R (2007) Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf B: Biointerfaces 60:180–186

    Article  CAS  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Greany KM (2005) An assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, Gulf of Panama. M.S. thesis, School of Life Sciences Heriot-Watt University, Edinburgh, Scotland

    Google Scholar 

  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–8605

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Saxena AK, Gopal M, Tilak KV (1998) Effect of plant growth promoting rhizobacteria on competitive ability of introduced Bradyrhizobium sp. (Vigna) for nodulation. Microbiol Res 153:113–117

    Article  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr J Plant Sci 44:37–42

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microb 43:895–914

    Article  CAS  Google Scholar 

  • Hanlon SM, Parris MJ (2012) The impact of pesticides on the pathogen Batrachochytrium dendrobatidis independent of potential hosts. Arch Environ Contam Toxicol 63:137–143

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hasnain S, Sabri AN (1997) Growth stimulation of Triticum aestivum seedlings under Cr-stresses by non-rhizospheric pseudomonad strains. Environ Pollut 97:265–273

    Article  CAS  PubMed  Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Hirase K, Molin WT (2002) Effects of MT-101 and NOP on germination and seedling growth of hemp sesbania and rice. Weed Sci 50:386–391

    Article  CAS  Google Scholar 

  • Hsu SC, Wong GTF, Gong GC, Shiah FK, Huang YT, Kao SJ, Tsai F, Lung SCC, Lin FJ, Lin II, Hung CC, Tseng CM (2010) Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Mar Chem 120:116–127

    Article  CAS  Google Scholar 

  • Huang H, Xiong ZT (2009) Toxic effects of cadmium, acetochlor and bensulfuron-methyl on nitrogen metabolism and plant growth in rice seedlings. Pestic Biochem Physiol 94:64–67

    Article  CAS  Google Scholar 

  • Huffmeyer N, Klasmeier J, Matthies M (2009) Geo-referenced modeling of zinc concentrations in the Ruhr river basin (Germany) using the model GREAT-ER. Sci Total Environ 407:2296–2305

    Article  PubMed  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    Article  CAS  PubMed  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummonii. Chemosphere 65:591–598

    Article  CAS  PubMed  Google Scholar 

  • Jackson MR (1991) Ethylene in root growth and development. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, pp 151–189

    Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Jarup L (2014) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  • Jeon JS, Lee SS, Kim HY, Ahn TS, Song HG (2003) Plant growth promotion in soil by some inoculated microorganisms. J Microbiol 41:271–276

    CAS  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98

    Article  CAS  PubMed  Google Scholar 

  • Juhasz AL, Stanley GA, Britz ML (2000) Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30:396–401

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Choi MS, Yi HI, Song YH, Lee D, Cho JH (2011) A five-year observation of atmospheric metals on Ulleung Island in the East/Japan Sea: temporal variability and source identification. Atmos Environ 45:4252–4262

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 7:2011. https://doi.org/10.4061/2011/805187

    Google Scholar 

  • Keller C, McGrath SP, Dunham SJ (2002) Trace metal leaching through a soil-grassland system after sewage sludge application. J Environ Qual 31(5):1550–1560

    CAS  PubMed  Google Scholar 

  • Khan MS, Chaudhary P, Wani PA, Zaidi A (2006) Biotoxic effects of the herbicides on growth, seed yield and grain protein of green gram. J Appl Sci Environ Manag 10(3):141–146

    Google Scholar 

  • Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee IJ (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64

    Article  CAS  Google Scholar 

  • Khodadoust AP, Reddy KR, Maturi K (2004) Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ Eng Sci 21(6):691–704

    Article  CAS  Google Scholar 

  • Kong Z, Mohamad OA, Deng Z, Liu X, Glick BR, Wei G (2015) Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ Sci Pollut Res 22(16):12479–12489

    Article  CAS  Google Scholar 

  • Kotasa J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  Google Scholar 

  • Kowalski A, Siepak M, Boszke L (2014) Mercury contamination of surface and ground waters of Poznań, Poland. Pol J Environ Stud 16:67–74

    Google Scholar 

  • Kumar N, Soni JI, Kumar H, Bhatt I (2008) Assessing heavy metal hyperaccumulation and mobility in selected vegetable crops: a case study of organic farm, Gujarat, India. Nat Environ Pollut Tech 7:203–210

    CAS  Google Scholar 

  • Kumar V, Sharma A, Dhunna G, Chawla A, Bhardwaj R, Thukral AK (2017) A tabulated review on distribution of heavy metals in various plants. Environ Sci Pollut Res 24:2210–2260

    Article  CAS  Google Scholar 

  • Lee EY, Jun YS, Cho KS, Ryu HW (2002) Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c. J Air Waste Manage Assoc 52:400–406

    Article  CAS  Google Scholar 

  • Lenart A, Koładka KW (2013) The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within Arcelor Mittal Poland Steelworks in Cracow. Bull Environ Contam Toxicol 90:85–90

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW (2011) Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Total Environ 409(6):1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18. https://doi.org/10.1007/s13225-012-0165-x

    Article  Google Scholar 

  • Li Y, Yang R, Zhang A, Wang S (2014) The distribution of dissolved lead in the coastal waters of the East China Sea. Mar Pollut Bull 85:700–709

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang Q, Wang L, He LY, Sheng XF (2016) Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: implications for Sorghum sudanense biomass production and phytostabilization. Ecotoxicol Environ Saf 124:163–168. https://doi.org/10.1016/j.ecoenv.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  • Lifshitz M, Shahak E, Bolotin A, Sofer S (1997) Carbamate poisoning in early childhood and in adults. Clin Toxicol 35(2):5–27

    Google Scholar 

  • Liu YY, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256 isolated from sewage. Appl Environ Microbiol 67:3746–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockert CK, Hoagland KD, Siegfrie BD (2006) Comparative sensitivity of freshwater algae to atrazine. Bull Environ Contam Toxicol 76:73–77

    Article  CAS  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Lelie DVD (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lopez L, Pozo C, Rodelas B, Calvo C, Juarez B, MartinezToledo MV, Gonzalez-Lopez J (2005) Identification of bacteria isolated from an oligotrophic lake with pesticide removal capacities. Ecotoxicology 14:299–312

    Article  CAS  PubMed  Google Scholar 

  • Luo SL, Wan Y, Xiao X, Guo H, Chen L, Xi Q, Zeng G, Liu C, Chen J (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Lu N, Qin W, Xu R, Wang Y, Chen X (2006) Differential responses of eight cyanobacterial and green algal species to carbamate insecticides. Ecotoxicol Environ Saf 63:268–274

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Nai FJ, Rajkumar M, Luo YM, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    Article  CAS  Google Scholar 

  • Ma Y, Zhang C, Oliveira RS, Freitas H, Luo Y (2016) Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal Rhizoaccumulation in host Sedum plumbizincicola. Front Plant Sci 7:75. https://doi.org/10.3389/fpls.2016.00075

    PubMed  PubMed Central  Google Scholar 

  • Mackie KA, Müller T, Zikeli S, Kandeler E (2013) Long-term copper application in an organic vineyard modifies spatial distribution of soil micro-organisms. Soil Biol Biochem 65:245–253

    Article  CAS  Google Scholar 

  • Magnusson M, Heimann K, Negri AP (2008) Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar Pollut Bull 56:1545–1552

    Article  CAS  PubMed  Google Scholar 

  • Mastretta C, Taghavi S, Lelie DVD, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • McLaren RG, Clucas LM, Taylor MD, Hendry T (2004) Leaching of macronutrients and metals from undisturbed soils treated with metal-spiked sewage sludge. 2. Leaching of metals. Aust J Soil Res 42(4):459–471

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Hamon RE, McLaren RG, Speir TW, Rogers SL (2000) Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res 38(6):1037–1086

    Article  CAS  Google Scholar 

  • Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015) Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritime improve plant growth but not metal uptake in polluted marshes soils. Front Microbiol 6:1450. https://doi.org/10.3389/fmicb.2015.01450

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesquini JA, Sawaya ACHF, Lopez BGC, Oliveira VM, Miyasaka NRS (2015) Detoxification of atrazine by endophytic Streptomyces sp. isolated from sugarcane and detection of nontoxic metabolite. Bull Environ Contam Toxicol 95:803–809. https://doi.org/10.1007/s00128-015-1673-7

    Article  CAS  PubMed  Google Scholar 

  • Miliūtė I, Buzaitė O (2011) IAA production and other plant growth promoting traits of endophytic bacteria from apple tree. Biologija 57:98–102

    Article  Google Scholar 

  • Mishra V, Srivastava G, Prasad SM (2009) Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Hortic Sci 120:373–378

    Article  CAS  Google Scholar 

  • Mithofer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  CAS  PubMed  Google Scholar 

  • Mohod CV, Dhote J (2013) Review of heavy metals in drinking water and their effect on human health. Int J Innov Res Sci Eng Technol 2(7):2992–2996

    Google Scholar 

  • Mota R, Pereiraa SB, Meazzinid M, Fernandesa R, Santosa A, Evanse CA, Philippisd RD, Wrighte PC, Tamagnini P (2015) Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J Proteome 120:75–94

    Article  CAS  Google Scholar 

  • Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman M, Chakraboti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163

    PubMed  Google Scholar 

  • Murphy JF, Reddy MS, Ryu CM, Kloepper JW, Li R (2003) Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301–1307

    Article  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Torre S, Mateos-Naranjo E, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2016) Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Mar Pollut Bull 110(1):133–142. https://doi.org/10.1016/j.marpolbul.2016.06.070

    Article  CAS  PubMed  Google Scholar 

  • Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, hani A, Lin F, Ali K, Afghan S, Raza G, Lashar MI (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5(3):177–183

    Google Scholar 

  • Nivya RM (2015) A study on plant growth promoting activity of the endophytic bacteria isolated from the root nodules of Mimosa Pudica plant. Int J Innov Res Sci Eng Tech 4:6959–6968

    Article  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  CAS  PubMed  Google Scholar 

  • Pan F, Meng Q, Luo S, Shen J, Chen B, Khan KY, Japenga J, Ma X, Yang X, Feng Y (2016) Enhanced cd extraction of oilseed rape (Brassica napus) by plant growth promoting bacteria isolated from Cd Hyperaccumulator Sedum alfredii Hance. Int J Phytoremediation. https://doi.org/10.1080/15226514.2016.1225280

  • Papadopoulou ES, Tsachidou B, Sławomir Sułowicz S, Menkissoglu-Spiroudi U, Karpouzas DG (2015) Land spreading of wastewaters from the fruit-packaging industry and potential effects on soil microbes: effects of the antioxidant Ethoxyquin and its metabolites on ammonia oxidizers. Appl Environ Microbiol 82:747–755

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Park BK, Kim JE (2006) Remediation of soil contaminated with 2, 4-dichlorophenol by treatment of minced shepherd’s purse roots. Arch Environ Contam Toxicol 50:191–195

    Article  CAS  PubMed  Google Scholar 

  • Parvaiz KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar, Fatma T (2011) Assessing the impact of Chlorpyrifos on growth, photosynthetic pigments and yield in Vigna radiata L. at different phenological stages. Afr J Agric Res 6:4432–4440

    Google Scholar 

  • Parween T, Jan S, Mahmooduzzafar S, Fatma T, Siddiqui ZH (2016) Selective effect of pesticides on plant—a review. Crit Rev Food Sci Nutr 56(1):160–179

    Article  CAS  PubMed  Google Scholar 

  • Pereira SI, Castro PM (2014) Diversity and characterization of culturable bacterial endophytes from Zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environ Sci Pollut Res 21:14110–14123

    Article  CAS  Google Scholar 

  • Phetcharat P, Duangpaeng A (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng 32:177–183

    Article  CAS  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    Article  CAS  PubMed  Google Scholar 

  • Porto AM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides, pesticides in modern world-pesticides use and management. [online]. http://www.intechopen.com/books/pesticides-in-the-modern-world-pesticidesuse-and-management/biodegradation-of-pesticides

  • Rajashekhar N, Prakasha, Murthy TCS (2012) Seed germination and physiological behavior of Maize (cv. Nac-6002) seedlings under abiotic stress (Pendimethalin) condition. Asian J Crop Sci 4(2):80–85

    Article  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10:333–353

    Article  Google Scholar 

  • Razo I, Carrizales L, Castro J, Barriga FD, Manroy M (2003) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152:129–152

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837. https://doi.org/10.1094/MPMI-19-0827

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl L, Jochimsen BV (1995) Uptake of indoleacetic acid in symbiosomes from soybean (Glycine max L.) root nodules. In: Nitrogen fixation: fundamentals and applications. Proceedings. 10. International Congress of Nitrogen Fixation, 11, St. Petersburg. Resumos. St. Petersburg, Russian Academy of Sciences, Russia, p 336

    Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan BS (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Salisbury FB (1994) Role of plant hormones. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York, pp 39–81

    Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Sayler GS, Hooper SW, Layton AC, King JMH (1990) Catabolic plasmids of environmental and ecological significance. Microb Ecol 19:1–20

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CIC, Sieber TN (eds) Microbial root endophytes. Springer-Verlag, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Sharma P, Kumar A, Bhardwaj R (2016a) Plant steroidal hormone Epibrassinolide regulate- heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R (2016b) Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicol Environ Saf 133:195–201

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Bhardwaj R, Kumar V, Thukral AK (2016c) GC-MS studies reveal stimulated pesticide detoxification by brassinolide application in Brassica juncea L. plants. Environ Sci Pollut Res 23:14518–14525

    Article  CAS  Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kesavan AK, Thukral AK, Bhardwaj R (2017) 24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biol 17(1):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Sheoran N, Nadakkakath AV, Munjal V, Kundu A, Subaharan K, Venugopal V, Rajamma S, Eapen SJ, Kumar A (2015) Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res 173:66–78

    Article  CAS  PubMed  Google Scholar 

  • Shi YW, Lou K, Li C (2009) Promotion of plant growth by phytohormone producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653

    Article  CAS  Google Scholar 

  • Shin MN, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199:314–320

    Article  PubMed  CAS  Google Scholar 

  • Shu X, Yin L, Zhang Q, Wang W (2012) Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ Sci Pollut Res 19:893–902

    Article  CAS  Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Song NH, Yin XL, Chen GF, Yang H (2007) Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere 68(9):1779–1787

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Staley ZR, Harwood VJ, Rohr JR (2015) A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Crit Rev Toxicol 45(10):813–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefan M, Mihasan M, Dunca S (2008) Plant growth promoting rhizobacteria can inhibit the in vitro germination of Glycine max L seeds. Scientific annals of university “Alexandru Ioan Cuza” Iasi. Sect Genet Mol Biol 3:105–110

    Google Scholar 

  • Sumner ME (2000) Beneficial use of effluents, wastes, and biosolids. Commun Soil Sci Plant Anal 31:1701–1715

    Article  CAS  Google Scholar 

  • Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101(2):501–509. https://doi.org/10.1016/j.biortech.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Wang X, Li Y (2015) Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria. Int J Phytoremediation. https://doi.org/10.1080/15226514.2015.1115962

  • Tekaya N, Saiapina O, Ouada HB, Lagarde F, Ouada HB, Renault NJ (2013) Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira platensis. Bioelectrochemistry 90:24–29

    Article  CAS  PubMed  Google Scholar 

  • Terry PA, Stone W (2002) Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere 47:249–255

    Article  CAS  PubMed  Google Scholar 

  • Tétard-Jones C, Edwards R (2016) Potential roles for microbial endophytes in herbicide tolerance in plants. Pest Manag Sci 72(2):203–209. https://doi.org/10.1002/ps.4147

    Article  PubMed  CAS  Google Scholar 

  • Thijs S, Van Dillewijn P, Sillen W, Truyens S, Holtappels M, Carleer R, Weyens N, Ameloot M, Ramos JL, Vangronsveld J (2014) Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil 385:15–36

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Turan K, Levent K, Muhittin S, Songul K (2008) Bacterial biodegradation of aldicarb and determination of bacterium which has the most biodegradative effect. Turk J Biochem 33:209–214

    Google Scholar 

  • Ullah A, Heng S, Munis MF, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Vasileva-Tonkova E, Galabova D (2003) Hydrolytic enzymes and surfactants of bacterial isolates from lubricant-contaminated wastewater. Z Naturforsch 58:87–92

    CAS  Google Scholar 

  • Vauterin L, Swings J (1997) Are classification and phytopathological diversity compatible in Xanthomonas. J Ind Microbiol Biotechnol 19:77–82

    Article  CAS  Google Scholar 

  • Vesely T, Neuberg M, Trakal L, Szakova J, Tlustoa P (2011) Water lettuce Pistia stratiotes L. response to lead toxicity. Water Air Soil Pollut 223:1847–1859

    Article  CAS  Google Scholar 

  • Viers J, Olivia P, Nonell A, Gelabert A, Sonke JE, Freydier R, Gainville R, Dupre B (2007) Evidence of Zn isotopic fractionation in a soil–plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem Geol 239:124–137

    Article  CAS  Google Scholar 

  • Visioli G, D’Egidio S, Vamerali T, Mattarozzi M, Sanangelantoni AM (2014) Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 117:538–544

    Article  CAS  PubMed  Google Scholar 

  • Visioli G, Vamerali T, Mattarozzi M, Dramis L, Sanangelantoni AM (2015) Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Front Plant Sci 6:638

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan Y, Luo S, Chen J, Xiao X, Chen L, Zeng G, Liu C, He Y (2012) Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 89(6):743–750

    Article  CAS  PubMed  Google Scholar 

  • Wang W-D, Niu JL, Cui ZJ (2005) Biodegradation of pesticides: a review. J Heilongj Aug First Land Reclam Univ 17(2):18

    Google Scholar 

  • Weckx J, Vangronsveld J, Clijster H (1993) Heavy metal induction of ethylene production and stress enzymes. I. Kinetics of response. In: Pech JC, Latche A, Balaque C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer Academic Publishers, Dordrecht, pp 238–239

    Chapter  Google Scholar 

  • Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microb Biotechnol 6(3):288–299. https://doi.org/10.1111/1751-7915.12038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K, Yu YL, Yu JQ (2009) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57(18):8406–8413

    Article  CAS  PubMed  Google Scholar 

  • Xinxian L, Xuemei C, Yagang C, Woon-Chung WJ, Zebin W, Qitang W (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc soil. World J Microbiol Biotechnol 27:1197–1207. https://doi.org/10.1007/s11274-010-0568-3

    Article  CAS  Google Scholar 

  • Yadav S, Prajapati R, Atri N (2016) Effects of UV-B and heavy metals on nitrogen and phosphorus metabolism in three cyanobacteria. J Basic Microbiol 56:2–13

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Zhi W, Liu Y, Karyala S, Vikesland PJ, Chen X, Zhang H (2015) Lead toxicity to the performance, viability, and community composition of activated sludge microorganisms. Environ Sci Technol 49(2):824–830

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li C, Nan Z (2010) Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J Hazard Mater 175(1):703–709

    Article  CAS  PubMed  Google Scholar 

  • Zhang WJ, Jiang FB, Ou JF (2011a) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125–144

    CAS  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M, Sheng XF (2011b) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011c) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum Alfredii. Int J Phytoremediation 15:51–64

    Article  CAS  PubMed  Google Scholar 

  • Zhang WH, He LY, Wang Q, Sheng XF (2015) Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum. J Hazard Mater 300:513–521

    Article  CAS  PubMed  Google Scholar 

  • Zhu LJ, Guan DX, Luo J, Rathinasabapathi B, Ma LQ (2014) Characterization of arsenic-resistant endophytic bacteria from hyperaccumuators Pteris vittata and Pteris multifida. Chemosphere 113:9–16

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anket Sharma or Renu Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A. et al. (2018). Potential of Endophytic Bacteria in Heavy Metal and Pesticide Detoxification. In: Egamberdieva, D., Ahmad, P. (eds) Plant Microbiome: Stress Response. Microorganisms for Sustainability, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-5514-0_14

Download citation

Publish with us

Policies and ethics