Skip to main content

Plant-Microbe-Metal Interactions: Basics, Recent Advances, and Future Trends

  • Chapter
  • First Online:
Plant Microbiome: Stress Response

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 5))

Abstract

All organisms require metal ions to complete their life cycle. Excess or shortage of essential metal ions is toxic to plants. Also, some heavy metals are toxic at all concentrations and hinder the functioning of plants. Therefore, plants including microbes have evolved metal homeostatic machineries to tackle toxic levels of metals inside the cell. Since a long time, scientists have investigated metal homeostasis mechanisms in plants. In last few decades, anthropogenic activities together with natural catastrophic events have increased the bioavailable concentration of heavy metals in the biosphere. Heavy metals are persistent in nature and cannot be biodegraded. Thus, heavy-metal pollution is becoming a threat to environment, agriculture, and human health. The microbes are the most sensitive creature to metal stress than the rest of soil fauna. Some plant-microbe interactions are beneficial under stress induced by heavy metal thereby enhancing uptake, translocation, distribution, and detoxification by either or both the partners, i.e., plant or microbe. The rapid progress in the research about the molecular and physiological mechanisms of plant-associated microbes is helping us to understand the factors influencing plant-microbe-metal interactions under heavy-metal stress. In this chapter, we have summarized various aspects and recent updates of three major interactions, i.e., plant-metal, plant-microbe, and plant-microbe-metal interactions. Further, we have assessed recent updates in beneficial plant-microbe interactions and their application in the management of metal-induced abiotic stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (1986) https://doi.org/10.1002/food.19870310321

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Akhter MF, McGarvey B, Macfie SM (2012) Reduced translocation of cadmium from roots is associated with increased production of phytochelatins and their precursors. J Plant Physiol 169:1821–1829

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Chernova TA, Newnam GP, Yin L, Shanks J, Karpova TS, Lee A, Laur O, Subramanian S, Kim D, McNally JG, Seyfried NT, Chernoff YO, Wilkinson KD (2014) Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion. Biol Chem 289(40):27625–27639

    Article  CAS  Google Scholar 

  • An H, Liu Y, Zhao X, Huang Q, Yuan S, Yang X, Dong J (2015) Characterization of cadmium-resistant endophytic fungi from Salix variegata Franch. in three Gorges Reservoir Region, China. Microbiol Res 176:29–37

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250-251:477–483

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Shea PJ, Oh BT (2014) Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites. Sci Total Environ 476–477:561–567

    Article  PubMed  CAS  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manag 151:160–166

    Article  CAS  Google Scholar 

  • Bayliss C, Bent E, Culham DE, MacLellan S, Clarke AJ, Brown GL, Wood JM (1997) Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3-canola mutualism: identification of an exudate-inducible sugar transporter. Can J Microbiol 43:809–818

    Article  CAS  PubMed  Google Scholar 

  • Belanger PA, Bellenger JP, Roy S (2015) Heavy metal stress in alders: tolerance and vulnerability of the actinorhizal symbiosis. Chemosphere 138:300–308

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya A, Routh J, Gunnar J, Bhattacharya P, Mörth M (2006) Environmental assessment of abandoned mine tailings in Adak, Västerbotten district (Northern Sweden). Appl Geochem 21:1760–1780

    Article  CAS  Google Scholar 

  • Blindauer CA, Leszczyszyn OI (2010) Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat Prod Rep 27:720–741

    Article  CAS  PubMed  Google Scholar 

  • Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. In: Donald LS (ed) . Adv, Academic Press, Agron, pp 145–204

    Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Candeias C, Melo R, Ávila PF, da Silva EF, Salgueiro AR, Teixeira JP (2014) Heavy metal pollution in mine-soil-plant system in S. Francisco de Assis–Panasqueira mine (Portugal). Appl Geochem 44:12–26

    Article  CAS  Google Scholar 

  • Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Physiol Plant 101:165–172

    Article  CAS  Google Scholar 

  • Chen T, Cai X, Wu X, Karahara I, Schreiber L, Lin J (2011) Casparian strip development and its potential function in salt tolerance. Plant Signal Behav 6:1499–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Zhang Y, Rafiq MT, Khan KY, Pan F, Yang X, Feng Y (2014) Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12: effects on plant growth and root exudates. Chemosphere 117:367–373

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Ma X, Liu G, Xu X, Pan F, Zhang J, Tian S, Feng Y, Yang X (2015) An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape. Environ Sci Pollut Res 22:17625–17635

    Article  CAS  Google Scholar 

  • Chen L, He L y, Wang Q, Sheng X f (2016a) Synergistic effects of plant growth-promoting Neorhizobium huautlense T1-17 and immobilizers on the growth and heavy metal accumulation of edible tissues of hot pepper. J Hazard Mater 312:123–131

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chao Y, Li Y, Lin Q, Bai J, Tang L, Wang S, Ying R, Qiu R (2016b) Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl Environ Microbiol 82:1734–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chetia M, Chatterjee S, Banerjee S, Nath MJ, Singh L, Srivastava RB, Sarma HP (2011) Groundwater arsenic contamination in Brahmaputra river basin: a water quality assessment in Golaghat (Assam), India. Environ Monit Assess 173:371–385

    Article  CAS  PubMed  Google Scholar 

  • Chiang PN, Chiu CY, Wang MK, Chen BT (2011) Low-molecular-weight organic acids exuded by Millet (Setaria italica (L.) Beauv.) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176:33–38

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  PubMed  Google Scholar 

  • Costa G, Michaut JC, Guckert A (1997) Amino acids exuded from axenic roots of lettuce and white lupin seedlings exposed to different cadmium concentrations. J Plant Nutr 20:883–900

    Article  CAS  Google Scholar 

  • DalCorso G, Manara A, Piasentin S, Furini A (2014) Nutrient metal elements in plants. Metallomics 6:1770–1788

    Article  CAS  PubMed  Google Scholar 

  • Duffus JH (2002) “Heavy metals” a meaningless term? (IUPAC technical report). Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Durand A, Piutti S, Rue M, Morel JL, Echevarria G, Benizri E (2016) Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil 399:179–192

    Article  CAS  Google Scholar 

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford

    Google Scholar 

  • Franchi E, Rolli E, Marasco R, Agazzi G, Borin S, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G (2016) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soils Sediments 1–13

    Google Scholar 

  • Freisinger E (2011) Structural features specific to plant metallothioneins. J Biol Inorg Chem 16:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  PubMed  Google Scholar 

  • Georgeaud VM, Rochette P, Ambrosi JP, Vandamme D, Williamson D (1997) Relationship between heavy metals and magnetic properties in a large polluted catchment: the Etang de Berre (south of France). Phys Chem Earth 22(1–2 Spec Iss):211–214

    Article  Google Scholar 

  • Greenberg EP (1997) Quorum sensing in Gram-negative bacteria. ASM News 63:371–377

    Google Scholar 

  • Greger M (1999) Metal availability and bioconcentration in plants. In: Heavy metal stress in plants. Springer, Berlin/Heidelberg, pp 1–27

    Google Scholar 

  • Grill E, Loffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta VK, Nayak A, Bhushan B, Agarwal S (2015) A critical analysis on the efficiency of activated carbons from low-cost precursors for heavy metals remediation. Crit Rev Environ Sci Technol 45:613–668

    Article  CAS  Google Scholar 

  • Gusain P, Paliwal R, Singh V (2017) Rhizoremediation of cadmium-contaminated soil associated with hydroxamate siderophores isolated from Cd-resistant plant growth-promoting Dietzia maris and Lysinibacillus strains. Int J Phytoremediation 19:290–299

    Article  CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Lane BG (1983) A novel protein programmed by the mRNA conserved in dry wheat embryos. Eur J Biochem 135:9–15

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins-metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs M, Rymer H, Gillman M et al. (2011) Characterisation and distribution of heavy metals at Masaya volcano, Nicaragua. Paper presented at AGU Fall Meeting abstracts Dec 2011

    Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Jebara SH, Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Jebara M (2015) Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. Environ Sci Pollut Res 22:2537–2545

    Article  CAS  Google Scholar 

  • Jeong S, Moon HS, Nam K (2014) Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophore-arsenic complex formation with an aid of rhizospheric bacterial activity. J Hazard Mater 280:536–543

    Article  CAS  PubMed  Google Scholar 

  • Jiang Q-Y, Zhuo F, Long S-H, Zhao H-D, Yang D-J, Ye Z-H, Li S-S, Jing Y-X (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Pareek A, Singla-Pareek SL (2016) Plant metallothioneins: classification, distribution, function, and regulation. In: Ahmad P (ed) Plant metal interaction: emerging remediation techniques. Elsevier, Amsterdam, pp 239–261

    Google Scholar 

  • Jovanovic VS, Mitić V, Mandić SN, Ilić M, Simonović S (2015) Heavy metals in the post-catastrophic soils. In: Heavy metal contamination of soils. Springer, pp 3–21

    Google Scholar 

  • Kaiser BN, Gridley KL, Brady JN, Phillips T, Tyerman SD (2005) The role of molybdenum in agricultural plant production. Ann Bot 96:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamran MA, Syed JH, Samas E, Munis MFH, Chaudhary HJ (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pollut Res 22:9275–9283

    Article  CAS  Google Scholar 

  • Khan MU, Sessitsch A, Harris M, Fatima K, Imran A, Arslan M, Shabir G, Khan QM, Afzal M (2015) Cr-resistant rhizo- and endophytic bacteria associated with Prosopis juliflora and their potential as phytoremediation enhancing agents in metal-degraded soils. Front Plant Sci 5:755

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AR, Ullah I, Waqas M, Park G-S, Khan AL, Hong S-J, Ullah R, Jung BK, Park CE, Ur-Rehman S, Lee I-J, Shin J-H (2017) Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Saf 136:180–188

    Article  CAS  PubMed  Google Scholar 

  • Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiol 107:515–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodre A, Arcon I, Debeljak M, Potisek M, Likar M, Vogel-Mikus K (2017) Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure. Environ Exp Bot 133:12–23

    Article  CAS  Google Scholar 

  • Kolbas A, Kidd P, Guinberteau J, Jaunatre R, Herzig R, Mench M (2015) Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower. Environ Sci Pollut Res 22:5370–5382

    Article  CAS  Google Scholar 

  • Kong Z, Mohamad OA, Deng Z, Liu X, Glick BR, Wei G (2015) Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environ Sci Pollut Res 22:12479–12489

    Article  CAS  Google Scholar 

  • Koszucka AM, Dąbrowska G (2006) Plant metallothioneins. Adv Cell Biol 33:285–302

    CAS  Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang Q, Wang B, Hou J, Luo Y, Tang C, Franks AE (2015a) Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil. J Soils Sediments 15:1191–1199

    Article  CAS  Google Scholar 

  • Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Ye Z, Jing Y (2015b) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49

    Article  Google Scholar 

  • Lu SG, Bai SQ (2006) Study on the correlation of magnetic properties and heavy metals content in urban soils of Hangzhou city, China. J Appl Geophys 60:1–12

    Article  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Luo ZB, Wu C, Zhang C, Li H, Lipka U, Polle A (2014) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exp Bot 108:47–62

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93:1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H (2015) Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci 5:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:1–19

    PubMed  PubMed Central  Google Scholar 

  • Mahadev SR, Hayashi H, Ikegami T, Abe S, Morita EH (2013) Improved protein overexpression and purification strategies for structural studies of cyanobacterial metal-responsive transcription factor, SmtB from marine Synechococcus sp. PCC 7002. Protein J 32:626–634

    Article  CAS  PubMed  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116:278

    Article  CAS  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (2012) Principles of plant nutrition. Springer, Berlin

    Google Scholar 

  • Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gomez S, Pajuelo E, Rodriguez-Llorente ID (2015) Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front Microbiol 6:1–15

    Article  Google Scholar 

  • Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M (2010) Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci 67:3763–3784

    Article  CAS  PubMed  Google Scholar 

  • Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:470–481

    Article  Google Scholar 

  • Mnasri M, Janoušková M, Rydlová J, Abdelly C, Ghnaya T (2017) Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extra-radical mycelial network. Chemosphere 171:476–484

    Article  CAS  PubMed  Google Scholar 

  • Moller A, Muller HW, Abdullah A, Abdelgawad G, Utermann J (2005) Urban soil pollution in Damascus, Syria: concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma 124:63–71

    Article  CAS  Google Scholar 

  • Navarro-Torre S, Mateos-Naranjo E, Caviedes MA, Pajuelo E, Rodriguez-Llorente ID (2016) Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Mar Pollut Bull 110:133–142

    Article  CAS  PubMed  Google Scholar 

  • Nicoarǎ A, Neagoe A, Stancu P, de Giudici G, Langella F, Sprocati AR, Iordache V, Kothe E (2014) Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. Environ Sci Pollut Res 21:6905–6920

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Noordman WH, Reissbrodt R, Bongers RS, Rademaker ILW, Bockelmann W, Smit G (2006) Growth stimulation of Brevibacterium sp. by siderophores. J Appl Microbiol 101:637–646

    Article  CAS  PubMed  Google Scholar 

  • Ogar A, Sobczyk Ł, Turnau K (2015) Effect of combined microbes on plant tolerance to Zn-Pb contaminations. Environ Sci Pollut Res 22:19142–19156

    Article  CAS  Google Scholar 

  • Okamoto T, Kamiyama K, Wachi K (1997) Background levels of heavy metals in Kanagawa prefecture farm soils impacted by volcanic ash from Mt. Fuji. In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekyia J (eds) Plant nutrition for sustainable food production and environment developments in plant and soil sciences, vol 78. Springer, Dordrecht, pp 553–554

    Chapter  Google Scholar 

  • Outten CE, O'halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  • Pan Y, Li H (2016) Investigating heavy metal pollution in mining brown field and its policy implications: a case study of the Bayan Obo rare earth mine, Inner Mongolia, China. Environ Manag 57:879–893

    Article  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbiol 47:368–372

    Article  CAS  PubMed  Google Scholar 

  • Pinter TB, Stillman MJ (2014) The zinc balance: competitive zinc metalation of carbonic anhydrase and metallothionein 1A. Biochemistry 53:6276–6285

    Article  CAS  PubMed  Google Scholar 

  • Płociniczak T, Kukla M, Wątroba R, Piotrowska-Seget Z (2013) The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L. Chemosphere 91:1332–1337

    Article  PubMed  CAS  Google Scholar 

  • Pourret O, Lange B, Bonhoure J, Colinet G, Decrée S, Mahy G, Séleck M, Shutcha M, Faucon MP (2016) Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl Geochem 64:43–55

    Article  CAS  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2013) Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. J Environ Manag 128:973–980

    Article  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19–48

    Article  CAS  PubMed  Google Scholar 

  • Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. Chem Sus Chem 1:708–717

    Article  CAS  Google Scholar 

  • Remans T, Thijs S, Truyens S, Weyens N, Schellingen K, Keunen E, Gielen H, Cuypers A, Vangronsveld J (2012) Understanding the development of roots exposed to contaminants and the potential of plant-associated bacteria for optimization of growth. Ann Bot 110:239–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24

    Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Shelake RM, Ito Y, Masumoto J, Morita EH, Hayashi H (2017) A novel mechanism of “metal gel-shift” by histidine-rich Ni2+-binding Hpn protein from Helicobacter pylori strain SS1. PLoS One 12:e0172182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shim J, Babu AG, Velmurugan P, Shea PJ, Oh B-T (2014) Pseudomonas fluorescens JH 70-4 promotes Pb stabilization and early seedling growth of sudan grass in contaminated mining site soil. Environ Technol 35:2589–2596

    Article  CAS  PubMed  Google Scholar 

  • Skorzynska-Polit E, Drazkiewicz M, Krupa Z (2010) Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiol Plant 32:169–175

    Article  CAS  Google Scholar 

  • Song Z, Williams CJ, Edyvean RGJ (2000) Sedimentation of tannery wastewater. Water Res 34:2171–2176

    Article  CAS  Google Scholar 

  • Souza LA, Camargos LS, Schiavinato MA, Andrade SAL (2014) Mycorrhization alters foliar soluble amino acid composition and influences tolerance to Pb in Calopogonium mucunoides. Theor Exp Plant Physiol 26:211–216

    Article  CAS  Google Scholar 

  • Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H (2008) Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot 59:3465–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taboonma P, Nakbanpote W, Sangdee A (2014) Resistance and plant growth-promoting properties under Zn / Cd stress of Pseudomonas sp. ZnCd 2003. In: Kumar R (ed) Proc. Intl. Conf. on future trends in bio-informatics and environmental science—FTBES. Bangkok, pp 15–20

    Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Reviews of Rev Environ Contam Toxicol 223:33–52

    CAS  PubMed  Google Scholar 

  • Teng Y, Luo Y, Ma W, Zhu L, Ren W, Luo Y, Christie P, Li Z (2015) Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities. Front Plant Sci 9:1–10

    Article  Google Scholar 

  • Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Heng S, Munis MF, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2001) Citizen’s guide to bioremediation. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vallano DM, Sparks JP (2008) Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar δ15N values. New Phytol 177:946–955

    Article  CAS  PubMed  Google Scholar 

  • Van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • Visioli G, Vamerali T, Mattarozzi M, Dramis L, Sanangelantoni AM (2015) Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Front Plant Sci 6:1–12

    Article  Google Scholar 

  • Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang X, Zhang X, Dong L, Zhang J, Wei Y, Feng Y, Lu L (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62:1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Liu Y, Zeng G, Liu H, Zheng B, Tang H, Xu W, Sun Z, Tan X, Nie J, Jiang Z, Gan C, Wang S (2015) The effects of P. aeruginosa ATCC 9027 and NTA on phytoextraction of Cd by ramie (Boehmeria nivea (L.) Gaud). RSC Adv 5:67509–67517

    Article  CAS  Google Scholar 

  • Xu C, Chen X, Duan D, Peng C, Le T, Shi J (2015) Effect of heavy-metal-resistant bacteria on enhanced metal uptake and translocation of the Cu-tolerant plant, Elsholtzia splendens. Environ Sci Pollut Res 22:5070–5081

    Article  CAS  Google Scholar 

  • Yacoub C, Pérez-Foguet A, Miralles N (2012) Trace metal content of sediments close to mine sites in the Andean region. Sci World J 2012:732519

    Article  CAS  Google Scholar 

  • Yang J, Mosby D, Casteel S, Blanchar R (2001) Lead immobilization using phosphoric acid in a smelter-contaminated urban soil. Environ Sci Technol 35:3553–3559

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Stulen I, De Kok LJ (2006) Impact of sulfate nutrition on the utilization of atmospheric SO2 as sulfur source for Chinese cabbage. J Plant Nutr Soil Sci 169:529–534

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  • Zahra A, Hashmi MZ, Malik RN, Ahmed Z (2014) Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci Total Environ 470:925–933

    Article  PubMed  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang WH, Chen W, He LY, Wang Q, Sheng XF (2015a) Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum. Ecotoxicol Environ Saf 120:369–376

    Article  PubMed  CAS  Google Scholar 

  • Zhang WH, He LY, Wang Q, Sheng XF (2015b) Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum. J Hazard Mater 300:513–521

    Article  CAS  PubMed  Google Scholar 

  • Zitka O, Krystofova O, Hynek D et al (2013) Metal transporters in plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin, pp 19–41

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Mahadev Shelake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shelake, R.M., Waghunde, R.R., Morita, E.H., Hayashi, H. (2018). Plant-Microbe-Metal Interactions: Basics, Recent Advances, and Future Trends. In: Egamberdieva, D., Ahmad, P. (eds) Plant Microbiome: Stress Response. Microorganisms for Sustainability, vol 5. Springer, Singapore. https://doi.org/10.1007/978-981-10-5514-0_13

Download citation

Publish with us

Policies and ethics