Advertisement

Pollen and Climate

  • Jae-Won Oh
Chapter

Abstract

Pollen grains, a causative agent of asthma and allergic rhinitis, allergic conjunctivitis are among the commonest allergens in atopic patients. Pollen allergy has a remarkable clinical impact all over world and there is a body of evidence suggesting that the prevalence of respiratory allergic reactions induced by pollens in a changing world is on the increase [1–3]. The prevalence of asthma has increased, and it is still increasing worldwide in parallel with that of allergy for the past 4 decades [4, 5]. This data suggests that it might be possible that the increase is related to changing many environments including climate.

References

  1. 1.
    D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, Liccardi G, Popov T, van Cauwenberge P. Allergenic pollen and pollen allergy in Europe. Allergy. 2007;62:976–90.CrossRefPubMedGoogle Scholar
  2. 2.
    European Community Respiratory Health Survey. Variations in the prevalence of respiratory symptoms, self-reported asthma attacks and the use of asthma medications in the European Community Respiratory Health Survey (ECRHS). Eur Respir J. 1996;9:687–95.CrossRefGoogle Scholar
  3. 3.
    Burney PGJ, Malmberg E, Chinn S, Jarvis D, Luczynska C, Lai E. The distribution of total and specific serum IgE in the European community respiratory health survey. J Allergy Clin Immunol. 1997;99:314–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Law M, Morris JK, Wald N, Luczynska C, Burney P. Changes in atopy over a quarter of a century, based on cross sectional data at three time periods. Br Med J. 2005;330:1187–8.CrossRefGoogle Scholar
  5. 5.
    Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, Williams H, ISAAC Phase Three Study Group. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Rogers CA, Wayne PM, Macklin EA, Muilenberg ML, Wagner CJ, Epstein PR, Bazzaz FA. Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect. 2006;114:865–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Buters JT, Weichenmeier I, Ochs S, Pusch G, Kreyling W, Boere AJ, et al. The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy. 2010;65:850–8.CrossRefPubMedGoogle Scholar
  8. 8.
    D’Amato G, Spieksma FT, Liccardi G, Jäger S, Russo M, Kontou-Fili K, Nikkels H, Wüthrich B, Bonini S. Pollen-related allergy in Europe. Allergy. 1998;53(6):567–78.CrossRefPubMedGoogle Scholar
  9. 9.
    Oh JW, Lee HB, Kang IJ, Kim SW, Park KS, Kook MH, et al. The revised edition of Korean calendar for allergenic pollens. Allergy Asthma Immunol Res. 2012;4:5–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Dahl A, Galan C, Hajkova L, Pauling A, Sikoparija B, Smith M, et al. The onset, course, and intensity of the pollen season. In: Sofiev M, Bergmann KC, editors. Allergenic pollen. Dordrect: Springer; 2013.Google Scholar
  11. 11.
    Abbas S, Katelaris CH, Singh AB, Raza SM, Ajab Khan M, Rashid M, Abbas M, Ismail M. World allergy organization study on aerobiology for creating first pollen and mold calendar with clinical significance in Islamabad, Pakistan; a project of world allergy organization and Pakistan allergy, asthma and clinical immunology centre of Islamabad. World Allergy Organ J. 2012;5:103–10.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mahanty RP, Buchheim MA, Anderson J, Levetin E. Molecular analysis confirms the long-distance transport of Juniperus ashei pollen. PLoS One. 2017;12(3):e0173465.CrossRefGoogle Scholar
  13. 13.
    D’Amato G, Pawankar R, Vitale C, Lanza M, Molino A, Stanziola A, Sanduzzi A, Vatrella A, D’Amato M. Climate change and air pollution: effects on respiratory allergy. Allergy Asthma Immunol Res. 2016;8:391–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rathcke B, Lacey EP. Phenological patterns of terrestrial plants. Ann Rev Ecol Syst. 1985;16:179–214.CrossRefGoogle Scholar
  15. 15.
    Rossi OVJ, Kinnula VL, Tienari J, Huhti E. Association of severe asthma attacks with weather, pollen, and air pollutants. Thorax. 1993;48:244–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Carey MJ, Cordon I. Asthma and climatic conditions: experience from Bermuda, an isolated island community. BMJ. 1986;293:843–4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Suzuki S, Kamakura Takadoro K, Takeuchi F, Yukiyama Y, Miyamoto T. Correlation between the atmospheric conditions and the asthmatic symptom. Int J Biometeorol. 1988;32:129–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Jamason PF, Kalkstein LS, Gergen PJ. A synoptic evaluation of asthma hospital admissions in New York City. Am J Respir Crit Care Med. 1997;156:1781–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Beggs PJ. Adaptation to impacts of climate change on aeroallergens and allergic respiratory diseases. Int J Environ Res Public Health. 2010;7:3006–21.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim KR, Kim M, Choe HS, Han MJ, Lee HR, Oh JW, Kim BJ. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function. Int J Biometeorol. 2017;61:259–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Dapul-Hidalgo G, Bielory L. Climate change and allergic diseases. Ann Allergy Asthma Immunol. 2012;109:166–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim JH, Oh JW, Lee HB, Kim SW, Kang IJ, Kook MH, et al. Changes in sensitization rate to weed allergens in children with increased weeds pollen counts in Seoul metropolitan area. J Korean Med Sci. 2012;27:350–5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    D’Amato G, Cecchi L. Effects of climate change on environmental factors in respiratory allergic diseases. Clin Exp Allergy. 2008;38:1264–74.CrossRefPubMedGoogle Scholar
  24. 24.
    Bousquet J, Khaltaev N, Cruz AA, et al. Allergic rhinitis and its impact on asthma (ARIA). Allergy. 2008;63:8–160.CrossRefPubMedGoogle Scholar
  25. 25.
    Oh JW, Kang IJ, Kim SW, Kook MH, Kim BS, Shin KS, Hahn YS, Lee HB, Shon MH, Cheong JT, Lee HR, Kim KE. The correlation between increased sensitization rate to weeds in children and the annual increase in weed pollen in Korea. Pediatr Allergy Respir Dis. 2006;16:114–21.Google Scholar
  26. 26.
    Kim JH, Oh JW, Lee HB, Kim SW, Chung HL, Kook MH, Park KS, Kim BS, Kim JK, Lee DJ, Paik WK, Kim KR, Lee HL, Choi YJ, Yu SD, Cho YS. Evaluation of the association of vegetation of allergenic plants and pollinosis with meteorological changes. Allergy Asthma Respir Dis. 2014;2(1):48–58.CrossRefGoogle Scholar
  27. 27.
    Shea KM, Truckner RT, Weber RW, Peden DB. Climate change and allergic disease. J Allergy Clin Immunol. 2008;122:443–53.CrossRefPubMedGoogle Scholar
  28. 28.
    Okamoto Y, Horiguchi S, Yamamoto H, Yonekura S, Hanazawa T. Present situation of cedar pollinosis in Japan and its immune responses. Allergol Int. 2009;58:155–62.CrossRefPubMedGoogle Scholar
  29. 29.
    Lee HR, Kim KR, Choi YJ, Oh JW. Meteorological impact on daily concentration of pollen in Korea. Korean J Agr Forest Meteorol. 2012;14:99–107.CrossRefGoogle Scholar
  30. 30.
    Norris-Hill J. The modelling of daily Poaceae pollen concentrations. Grana. 1995;34:182–8.CrossRefGoogle Scholar
  31. 31.
    DeLurgio SA. Forecasting principles and applications. New York: McGraw-Hill; 1998.Google Scholar
  32. 32.
    Tabachnick BG, Fidell LS. Using multivariate statistics. New York: Harper Collins; 2001.Google Scholar
  33. 33.
    Emberlin J, Mullins J, Corden J, Jones S, Millington W, Brooke M, Savage M. Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clin Exp Allergy. 1999;29:347–56.CrossRefPubMedGoogle Scholar
  34. 34.
    Chuine I, Cour P, Rousseau DD. Selecting models to predict the timing of fl owering of temperate trees: implications for tree phenology modelling. Plant Cell Environ. 1999;22:1–13.CrossRefGoogle Scholar
  35. 35.
    Chuine I, Belmonte J, Mignot A. A modelling analysis of the genetic variation of phenology between tree populations. J Ecol. 2000;80:561–70.CrossRefGoogle Scholar
  36. 36.
    Kinnear PR, Gray CD. SPSS for windows made simple. Padstow: T.J. International; 1999.Google Scholar
  37. 37.
    Frenguelli G, Ghitarrini S, Tedeschini E. Time linkages between pollination onsets of different taxa in Perugia, Central Italy-an update. Ann Agric Environ Med. 2016;23:92–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Valderrama MJ, Ocaña FA, Aguilera AM, Ocaña-Peinado FM. Forecasting pollen concentration by a two-step functional model. Biometrics. 2010;66:578–85.CrossRefPubMedGoogle Scholar
  39. 39.
    Ribeiro H, Cunha M, Abreu I. Definition of main pollen season using a logistic model. Ann Agric Environ Med. 2007;14:259–64.PubMedGoogle Scholar
  40. 40.
    Subiza J, Masiello JM, Subiza JL, Jerez M, Hinojasa M, Subiza E. Prediction of annual variations in atmospheric concentrations of grass pollen. A method based on meteorological factors and grain crop estimates. Clin Exp Allergy. 1992;22:540–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Sabariego S, Cuesta P, Fernandez-Gonzalez F, Perez-Badia R. Models for forecasting airborne Cupressaceae pollen levels in Central Spain. Int J Biometeorol. 2012;56:253–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Khwarahm N, Dash J, Atkinson PM, Newnham RM, Skjoth CA, Adams-Groom B, Caulton E, Head K. Exploring the spatio-temporal relationship between two key aeroallergens and meteorological variables in the United Kingdom. Int J Biometeorol. 2014;58:529–45.CrossRefPubMedGoogle Scholar
  43. 43.
    Buters J, Prank M, Sofiev M, Pusch G, Albertini R, Annesi-Maesano I, et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J Allergy Clin Immunol. 2015;136:87–95.CrossRefPubMedGoogle Scholar
  44. 44.
    De Weger LA, Beerthuizen T, Hiemstra PS, Sont JK. Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis. Int J Biometeorol. 2014;58:1047–51.PubMedGoogle Scholar
  45. 45.
    Bielory L, Lyons K, Goldberg R. Climate change and allergic disease. Curr Allergy Asthma Rep. 2012;12:485–94.CrossRefPubMedGoogle Scholar
  46. 46.
    Epstein PR. Climate change and human health. New Engl J Med. 2005;353:1433–65.CrossRefPubMedGoogle Scholar
  47. 47.
    Haines A, Kovats RS, Campbell-Lendrum D, Corvalan C. Climate change and human health: impacts, vulnerability, and mitigation. Lancet. 2006;367:2101–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Schmidt CW. Pollen overload seasonal allergies in a changing climate. Environ Health Perspect. 2016;124:A71–5.Google Scholar
  49. 49.
    Sheffield PE, Weinberger KR, Kinny PL. Climate change, aeroallergens and pediatric allergic disease. Mt Sinai J Med. 2011;78:78–84.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Reid CE, Gamble JL. Aeroallergens, allergic disease, and climate change: impacts and adaptation. EcoHealth. 2009;6:458–70.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Garcı́a-Mozo H, Galán C, Belmonte J, Fernández D, Rodriguez FJ. Modelling start of oak pollen season in different climatic zones in Spain. Agric For Meteorol. 2002;110:247–57.CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Bielory L, Georgopoulos PG. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States. Int J Biometeorol. 2014;58:909–19.CrossRefPubMedGoogle Scholar
  53. 53.
    Beggs PJ, Bambrick HJ. Is the global rise of asthma an early impact of anthropogenic climate change? Environ Health Perspect. 2005;113(8):915–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Singer BD, Ziska LH, Frenz DA, Gebhard DE, Straka JG. Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Funct Plant Biol. 2005;32:667–70.CrossRefGoogle Scholar
  55. 55.
    Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD, Straka JG. Cities as harbingers of climate change: common ragweed, urbanization, and public health. J Allergy Clin Immunol. 2003;111:290–5.CrossRefPubMedGoogle Scholar
  56. 56.
    IPCC. Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Climate change 2013. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013.Google Scholar
  57. 57.
    Ziska LH, Beggs PJ. Anthropogenic climate change and allergen exposure: the role of plant biology. Int J Biometeorol. 2014;58(1):1–6.CrossRefGoogle Scholar
  58. 58.
    D’Amato G, Holgate ST, Pawankar R, Ledford DK, Cecchi L, Al-Ahmad M, Al-Enezi F, Al-Muhsen S, Ansotegui I, Baena-Cagnani CE, Baker DJ, Bayram H, Bergmann KC, Boulet LP, Buters JT, D’Amato M, Dorsano S, Douwes J, Finlay SE, Garrasi D, Gómez M, Haahtela T, Halwani R, Hassani Y, Mahboub B, Marks G, Michelozzi P, Montagni M, Nunes C, Oh JW, Popov TA, Portnoy J, Ridolo E, Rosário N, Rottem M, Sánchez-Borges M, Sibanda E, Sienra-Monge JJ, Vitale C, Annesi-Maesano I. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ J. 2015;14(8):1–52.CrossRefGoogle Scholar
  59. 59.
    Knox RB. Grass pollen, thunderstorms and asthma. Clin Exp Allergy. 1993;23:354–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Bauman A. Asthma associated with thunderstorms. BMJ. 1996;312:590–1.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Davidson AC, Emberlin J, Cook AD, Venables KM. A major outbreak of asthma associated with a thunderstorm. Thames region accident and emergency trainees association. BMJ. 1996;312:601–4.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Celenza A, Fothergill J, Kupek E, Shaw RJ. Thunderstorm associated asthma: a detailed analysis of environmental factors. BMJ. 1996;312:604–7.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Venables KM, Allitt U, Collier CG, Emberlin J, Greig JB, Hardaker PJ, et al. Thunderstorm-related asthma - epidemic of 24/25 June 1994. Clin Exp Allergy. 1997;27:725–36.PubMedGoogle Scholar
  64. 64.
    Newson R, Strachan D, Archibald E, Emberlin J, Hardaker P, Collier C. Effect of thunderstorms and airborne grass pollen on the incidence of acute asthma in England, 1990–1994. Thorax. 1997;52:680–5.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Antò JM, Sunyer J. Thunderstorms: a risk factor for asthma attacks. Thorax. 1997;52:669–70.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Newson R, Strachan D, Archibald E, Emberlin J, Hardaker P, Collier C. Acute asthma epidemics, weather and pollen in England, 1987–1994. Eur Respir J. 1998;11:694–701.PubMedGoogle Scholar
  67. 67.
    Girgis ST, Marks GB, Downs SH, Kolbe A, Car GN, Paton R. Thunderstorm associated asthma in an inland town in southeastern Australia. Who is at risk? Eur Respir J. 2000;16:3–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Marks GB, Colquhoun JR, Girgis ST, Koski MH, Treloar AB, Hansen P, et al. Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax. 2001;56:468–71.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Erbas B, Akram M, Dharmage SC, Tham R, Dennekamp M, Newbigin E, Taylor P, Tang ML, Abramson MJ. The role of seasonal grass pollen on childhood asthma emergency department presentations. Clin Exp Allergy. 2012;42:799–805.CrossRefPubMedGoogle Scholar
  70. 70.
    D’Amato G. Environmental urban factors (air pollution and allergens) and the rising trends in allergic respiratory diseases. Allergy. 2002;57(Suppl):30–3.CrossRefPubMedGoogle Scholar
  71. 71.
    D’Amato G, Liccardi G, D’Amato M, Holgate ST. Environmental risk factors and allergic bronchial asthma. Clin Exp Allergy. 2003;35:1113–24.CrossRefGoogle Scholar
  72. 72.
    D’Amato G, Cecchi L, Annesi-Maesano I. A trans-disciplinary overview of case reports of thunderstorm-related asthma outbreak and relapse. Eur Respir Rev. 2012;21:82–7.CrossRefPubMedGoogle Scholar
  73. 73.
    D’Amato G, Corrado A, Cecchi L, Liccardi G, Stanziola A, Annesi-Maesano I, et al. A relapse of near-fatal thunderstorm-asthma in pregnancy. Eur Ann Allergy Clin Immunol. 2013;45:116–7.PubMedGoogle Scholar
  74. 74.
    Marks GB, Bush RK. It’s blowing in the wind: new insights into thunderstorm-related asthma. J Allergy Clin Immunol. 2007;120:530–2.CrossRefPubMedGoogle Scholar
  75. 75.
    Dabrera G, Murray V, Emberlin J, Ayres JG, Collier C, Clewlow Y, et al. Thunderstorm asthma: an overview of the evidence base and implications for public health advice. QJM. 2013;106:2.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jae-Won Oh
    • 1
  1. 1.Division of Allergy and Clinical Immunology, Department of PediatricsHanyang University College of MedicineSeoulRepublic of Korea

Personalised recommendations