Advertisement

The Formation of Pollen

  • Jae-Won Oh
Chapter

Abstract

Plants propagate through extension via trunk, or root shoots, or by seed. Transport of the male gamete, the pollen, to the female gamete, the ovary, accomplishes sexual reproduction. Pollen dispersal mechanisms may involve the wind (anemophily) or a vector such as an insect (entomophily). Insect-pollinated plants are uncommon inducers of hay fever, with a few exceptions because they are not capable to fly for enough time to affect the human in the air with its high molecular weight. Some plants using both mechanisms, but primarily insect-pollinated, produce sufficient pollen that becomes airborne (amphiphily) [1].

References

  1. 1.
    Erdtman G. An introduction to pollen analysis. Waltham: Chronica Botanica; 1954.Google Scholar
  2. 2.
    Johnstone A. Biology: facts & practice for a level. Oxford: Oxford University Press; 2001. p. 95.Google Scholar
  3. 3.
    Pleasants JM, Hellmich RL, Dively GP, Sears MK, Stanley-Horn DE, Mattila HR, Foster JE, Clark P, Jones GD. Corn pollen deposition on milkweeds in and near cornfields. Proc Natl Acad Sci U S A. 2001;98(21):11919–24.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Furness CA, Rudall PJ. Pollen and anther characters in monocot systematics. Grana. 2001;40:17–25.CrossRefGoogle Scholar
  5. 5.
    Hirano T, Takagi K, Hoshino Y, Abe T. DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth. AoB Plants. 2013;5:plt004.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lewis WR, Vinay P, Zenger VE. Airborne and allergenic pollen of North America. Baltimore: The Johns Hopkins University Press; 1983.Google Scholar
  7. 7.
    Weber RW, Nelson HS. Pollen allergens and their interrelationships. Clin Rev Allergy. 1985;3:291–318.CrossRefPubMedGoogle Scholar
  8. 8.
    Jarolim E, Tejkl M, Rohac M, et al. Monoclonal antibodies against birch pollen allergens: characterization by immunoblotting and use for single-step affinity purification of the major allergen Bet v 1. Int Arch Allergy Appl Immunol. 1989;90:54–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Breiteneder H, Pettenburger K, Bito A, et al. The gene coding for the major birch pollen allergen Bet v l, is highly homologous to a pea disease resistance response gene. EMBOJ. 1989;8:1935–8.Google Scholar
  10. 10.
    Valenta R, Duchene M, Vrtala S, et al. Recombinant allergens for immunoblot diagnosis of tree-pollen allergy. J Allergy Clin Immunol. 1991;88:889–94.CrossRefPubMedGoogle Scholar
  11. 11.
    Ferreira F, Engel E, Briza P, et al. Characterization of recombinant Bet v 4, a birch pollen allergen with two EF-hand calcium-binding domains. Int Arch Allergy Immunol. 1999;118:304–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Seiberler S, Scheiner O, Kraft D, et al. Characterization of a birch pollen allergen, Bet v III,representing a novel class of Ca2+ binding proteins: specific expression in mature pollen and dependence of patients' IgE binding on protein-bound Ca2+. EMBOJ. 1994;13:3481–6.Google Scholar
  13. 13.
    Karamloo F, Schmitz N, Scheurer S, et al. Molecular cloning and characterization of a birch pollen minor allergen, Bet v 5, belonging to a family of isoflavone reductase-related proteins. J Allergy Clin Immunol. 1999;104:991–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Cadot P, Diaz JF, Proost P, et al. Purification and characterization of an 18-kd allergen of birch (Betula verrucosa) pollen: identification as a cyclophilin. J Allergy Clin Immunol. 2000;105:286–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Yasueda H, Yui Y, Shimizu T, et al. Isolation and partial characterization of the major allergen from Japanese cedar (Cryptomeria japonica) pollen. J Allergy Clin Immunol. 1983;71:77–86.CrossRefPubMedGoogle Scholar
  16. 16.
    Sakaguchi M, Inouye S, Taniai M, et al. Identification of the second major allergen of Japanese cedar pollen. Allergy. 1990;45:309–12.CrossRefPubMedGoogle Scholar
  17. 17.
    Midoro-Horiuti T, Goldblum RM, Kurosky A, et al. Isolation and characterization of the mountain cedar (Juniperus ashei) pollen major allergen, Jun a 1. J Allergy Clin Immunol. 1999;104:608–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Tejera ML, Vilhlba M, Batanero E, et al. Identification, isolation, and characterization of Ole e 7, a new allergen of olive tree pollen. J Allergy Clin Immunol. 1999;104:797–802.CrossRefPubMedGoogle Scholar
  19. 19.
    Hemmens VJ, Baldo BA, Bass D, Vik H, Florvaag E, Elsayed S. A comparison of the antigenic and allergenic components of birch and Alder pollens in Scandinavia and Australia. Int Arch Allergy Appl Immunol. 1988;85:27–37.CrossRefPubMedGoogle Scholar
  20. 20.
    Florvaag E, Elsayed S, Hammer AS. Comparative studies on tree pollen allergens. XIII. Partial characterization of the Alder (Alnus incana) pollen extract by two-dimensional IEF/SDS-PAG electrophoresis combined with electrophoretic transfer and immunoautoradiography. Int Arch Allergy Appl Immunol. 1986;80:26–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Ipsen H, Bøwadt H, Janniche H, Nüchel Petersen B, Munch EP, Wihl JA, Løwenstein H. Immunochemical characterization of reference alder (Alnus glutinosa) and hazel (Corylus avellana) pollen extracts and the partial immunochemical identity between the major allergens of alder, birch and hazel pollens. Allergy. 1985;40:510–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Florvaag E, Elsayed S. Comparative studies on tree pollen allergens. VIII. Immunological properties of the Alder (Alnus incana) pollen extract. Int Arch Allergy Appl Immunol. 1984;75(4):300–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Florvaag E, Elsayed S, Apold J. Comparative studies on tree pollen allergens. II. Isolation of Alder (Alnus incana) pollen allergens: purification and some characteristics of the major allergen pI 4.78. Int Arch Allergy Appl Immunol. 1982;67(1):49–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Loria RC, Wilson P, Wedner HJ. Identification of potential allergens in White Oak (Quercus alba) pollen by immunoblotting. J Allergy Clin Immunol. 1989;84(1):9–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Moverare R, Everberg H, Carlsson R, Holtz A, Thunberg R, Olsson P, Brostedt P, Hogbom E. Purification and characterization of the major oak pollen allergen Que a 1 for component-resolved diagnostics using ImmunoCAP. Int Arch Allergy Immunol. 2008;146(3):203–11.CrossRefPubMedGoogle Scholar
  26. 26.
    Ford SA, Baldo BA. A re-examination of ryegrass (Lolium perenne) pollen allergens. Int Arch Allergy Appl Immunol. 1986;81:193–203.CrossRefPubMedGoogle Scholar
  27. 27.
    Lowenstein H, Osterballe O. Standardized grass pollen extracts. Clin Rev Allergy. 1986;4:405–23.PubMedGoogle Scholar
  28. 28.
    Staff IA, Taylor PE, Smith P, et al. Cellular localization of water soluble, allergenic proteins in rye-grass (Lolium perenne) pollen using monoclonal and specific IgE antibodies with immunogold probes. Histochem J. 1990;22:276–90.CrossRefPubMedGoogle Scholar
  29. 29.
    Cosgrove DJ, Bedinger P, Durachko DM. Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci U S A. 1997;94:6559–64.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    van Ree R, Driessen MN, van Leeuwen WA, et al. Variability of crossreactivity of IgE antibodies to group I and V allergens in eight grass pollen species. Clin Exp Allergy. 1992;22:611–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Matthiesen F, Lowenstein H. Group V allergens in grass pollens. II. Investigation of group V allergens in pollens from 10 grasses. Clin Exp Allergy. 1991;21:309–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Mourad W, Mecheri S, Peltxe G, et al. Study of the epitope structure of purified Dac G I and Lol p I, the major allergens of Dactylis glomerata and Lolium perenne pollens, using monoclonal antibodies. J Immunol. 1988;141:3486–91.PubMedGoogle Scholar
  33. 33.
    Petersen A, Schramm G, Bufe A, et al. Structural investigations of the major allergen Phi p I on the complementary DNA and protein level. J Allergy Clin Immunol. 1995;95:987–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Matthiesen F, Lowenstein H. Graminea allergens: biochemistry. Horsholm: ALK Research; 1990.Google Scholar
  35. 35.
    Tamborini E, Brandazza A, De Lalla C, et al. Recombinant allergen Lol p II: expression, purification and characterization. Mol Immunol. 1995;32:505–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Valenta R, Duchene M, Ebner C, et al. Profilins constitute a novel family of functional plant pan-allergens. J Exp Med. 1992;175:377–85.CrossRefPubMedGoogle Scholar
  37. 37.
    Guerin-Marchand C, Senechal H, Bouin AP, et al. Cloning, sequencing and immunological characterization of Dac g 3ta major allergen from Dactylis glomerata pollen. Mol Immunol. 1996;33:797–806.CrossRefPubMedGoogle Scholar
  38. 38.
    Fischer S, Grote M, Fahlbusch B, et al. Characterization of Phi p 4, major timothy grass (Phleum pratense) pollen allergen. J Allergy Clin Immunol. 1996;98:189–98.CrossRefPubMedGoogle Scholar
  39. 39.
    Olsen E, Zhang L, Hill RD, et al. Identification and characterization of the Poa p IX group of basic allergens of Kentucky bluegrass pollen. J Immunol. 1991;147:205–11.PubMedGoogle Scholar
  40. 40.
    Bufe A, Schramm G, Keown MB, et al. Major allergen Phip Vb in timothy grass is a novel pollen RNase. FEBS Lett. 1995;363:6–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Walsh DJ, Matthews JA, Denmeade R, et al. Cloning of cDNA coding for an allergen of Cocksfoot grass (Dactylis glomerata) pollen. Int Arch Allergy Appl Immunol. 1989;90:78–83.CrossRefPubMedGoogle Scholar
  42. 42.
    van Ree R, Hoffman DR, van Dijk W, et al. Lol p XI, a new major grass pollen allergen, is a member of a family of soybean trypsin inhibitor-related proteins. J Allergy Clin Immunol. 1995;95:970–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Suphioglu C, Ferreira F, Knox RB. Molecular cloning and immunological characterisation of Cyn d 7, a novel calcium-binding allergen from Bermuda grass pollen. FEBS Lett. 1997;402:167–72.CrossRefPubMedGoogle Scholar
  44. 44.
    Niederberger V, Laffer S, Froschl R, et al. IgE antibodies to recombinant pollen allergens (Phi p 1, Phi p 2, Phi p 5, and Bet v 2) account for a high percentage of grass pollen-specific IgE. J Allergy Clin Immunol. 1998;101:258–64.CrossRefPubMedGoogle Scholar
  45. 45.
    van Ree R, van Leeuwen WA, Aalberse RC. How far can we simplify in vitro diagnostics for grass pollen allergy? A study with 17 whole pollen extracts and purified natural and recombinant major allergens. J Allergy Clin Immunol. 1998;102:184–90.CrossRefPubMedGoogle Scholar
  46. 46.
    Bhalla PL, Swoboda I, Singh MB. Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen. Proc Natl Acad Sci U S A. 1996;96:11676–80.CrossRefGoogle Scholar
  47. 47.
    King TP, Norman PS. Standardized extracts, weeds. Clin Rev Allergy. 1986;4:425–33.PubMedGoogle Scholar
  48. 48.
    King TP, Norman PS, Lichtenstein LM. Studies on ragweed pollen allergens. V. Ann Allergy. 1967;25:541–3.PubMedGoogle Scholar
  49. 49.
    Baer H, Godfrey H, Maloney CJ, et al. The potency and antigen E content of commercially prepared ragweed extracts. J Allergy. 1970;45:347–54.CrossRefPubMedGoogle Scholar
  50. 50.
    Rafnar T, Griffith IJ, Kuo MC, et al. Cloning of Amb a I (antigen E), the major allergen family of short ragweed pollen. J Biol Chem. 1991;266:1229–36.PubMedGoogle Scholar
  51. 51.
    Gleich GJ, Yunginger JW. Ragweed hay fever: treatment by local passive administration of IgG antibody. Clin Allergy. 1975;5:79–87.CrossRefPubMedGoogle Scholar
  52. 52.
    Lee YS, Dickinson DB, Schlager D, et al. Antigen E content of pollen from individual plants of short ragweed (Ambrosia artemisiifolia). J Allergy Clin Immunol. 1979;63:336–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Rogers BL, Morgenstern JP, Griffith IJ, et al. Complete sequence of the allergen Amb alpha II. Recombinant expression and reactivity with T cells from ragweed allergic patients. J Immunol. 1991;147:2547–52.PubMedGoogle Scholar
  54. 54.
    Adolphson C, Goodfriend L, Gleich GJ. Reactivity of ragweed allergens with IgE antibodies. Analyses by leukocyte histamine release and the radioallergosorbent test and determination of cross-reactivity. J Allergy Clin Immunol. 1978;62:197–210.CrossRefPubMedGoogle Scholar
  55. 55.
    Goodfriend L. Toward structure-function studies with ragweed allergens Ra 3 and Ra 5. In: Mathov E, Sindro T, Naranjo P, editors. Allergy and clinical immunology. Amsterdam: Excerpta Medica; 1977. p. 151.Google Scholar
  56. 56.
    Santilli J Jr, Potsus RL, Goodfriend L, et al. Skin reactivity to purified pollen allergens in highly ragweed-sensitive individuals. J Allergy Clin Immunol. 1980;65:406–12.CrossRefPubMedGoogle Scholar
  57. 57.
    Roebber M, Hussain R, Klapper DG, et al. Isolation and properties of a new short ragweed pollen allergen, Ra6. J Immunol. 1983;131:706–11.PubMedGoogle Scholar
  58. 58.
    Roebber M, Marsh DG. Isolation and characterization of allergen Amb a VII from short ragweed pollen [Abstract]. J Allergy Clin Immunol. 1991;87:324.CrossRefGoogle Scholar
  59. 59.
    Rogers BL, Pollock J, Klapper DG, et al. Sequence of the proteinase-inhibitor cystatin homologue from the pollen of Ambrosia artemisiifolia (short ragweed). Gene. 1993;133:219–21.CrossRefPubMedGoogle Scholar
  60. 60.
    Hussain R, Norman PS, Marsh DG. Rapidly released allergens from short ragweed pollen. II. Identification and partial purification. J Allergy Clin Immunol. 1981;67:217–22.CrossRefPubMedGoogle Scholar
  61. 61.
    Goodfriend L, Roebber M, Lundkvist U, et al. Two variants of ragweed allergen Ra3. J Allergy Clin Immunol. 1981;67:299–304.CrossRefPubMedGoogle Scholar
  62. 62.
    Lubahhn B, Klapper DG. Cloning and characterization of ragweed allergen Amb a VII from short ragweed pollen [Abstract]. J Allergy Clin Immunol. 1993;91:338.Google Scholar
  63. 63.
    Marsh DG, Hsu SH, Hussain R, et al. Genetics of human immune response to allergens. J Allergy Clin Immunol. 1980;65:322–32.CrossRefPubMedGoogle Scholar
  64. 64.
    Roebber M, Klapper DG, Goodfriend L, et al. Immunochemical and genetic studies of Amb t V (Ra5G), an Ra5 homologue from giant ragweed pollen. J Immunol. 1985;134:3062–9.PubMedGoogle Scholar
  65. 65.
    Shafiee A, Yunginger JW, Gleich GJ. Isolation and characterization of Russian thistle (Salsola pestifer) pollen allergens. J Allergy Clin Immunol. 1981;67:472–81.CrossRefPubMedGoogle Scholar
  66. 66.
    Cocchiara R, Locorotondo G, Pariato A, et al. Purification of Parj I, a major allergen from Parietaria judaica pollen. Int Arch Allergy Appl Immunol. 1989;90:84–90.CrossRefPubMedGoogle Scholar
  67. 67.
    Costa MA, Duro G, Izzo V, et al. The IgE-binding epitopes of rPar j 2, a major allergen of Parietaria judaica pollen, are heterogeneously recognized among allergic subjects. Allergy. 2000;55:246–50.CrossRefPubMedGoogle Scholar
  68. 68.
    Coscia MR, Ruffilli A, Oreste U. Basic isoforms of Par o 1, the major allergen of Parietaria officinalis pollen. Allergy. 1995;50:899–904.CrossRefPubMedGoogle Scholar
  69. 69.
    Duro G, Colombo P, Assunta CM, et al. Isolation and characterization of two cDNA clones coding for isoforms of the Parietaria judaica major allergen Par j 1.0101. Int Arch Allergy Immunol. 1997;112:348–55.CrossRefPubMedGoogle Scholar
  70. 70.
    Menna T, Cassese G, Di Modugno F, et al. Characterization of a dodecapeptide containing a dominant epitope of Par j 1 and Par o 1, the major allergens of P. judaica and P. officinalis pollen. Allergy. 1999;54:1048–57.CrossRefPubMedGoogle Scholar
  71. 71.
    Nilsen BM, Grimsoen A, Paulsen BS. Identification and characterization of important allergens from mugwort pollen by IEF, SDS-PAGE and immunoblotting. Mol Immunol. 1991;28:733–42.CrossRefPubMedGoogle Scholar
  72. 72.
    Hirschwehr R, Heppner C, Spitzauer S, et al. Identification of common allergenic structures in mugwort and ragweed pollen. J Allergy Clin Immunol. 1998;101:196–206.CrossRefPubMedGoogle Scholar
  73. 73.
    Leb VM, Jahn-Schmid B, Schmetterer KG, Kueng HJ, Haiderer D, Neunkirchner A, Fischer GF, Nissler K, Hartl A, Thalhamer J, Bohle B, Seed B, Pickl WF. Molecular and functional analysis of the antigen receptor of Art v 1-specific helper T lymphocytes. J Allergy Clin Immunol. 2008;121(1):64–71.CrossRefPubMedGoogle Scholar
  74. 74.
    Jahn-Schmid B, Fischer GF, Bohle B, Faé I, Gadermaier G, Dedic A, Ferreira F, Ebner C. Antigen presentation of the immunodominant T-cell epitope of the major mugwort pollen allergen, Art v 1, is associated with the expression of HLA-DRB1 *01. J Allergy Clin Immunol. 2005;115(2):399–404.CrossRefPubMedGoogle Scholar
  75. 75.
    Jimeno L, Duffort O, Serrano C, Barber D, Polo F. Monoclonal antibody-based ELISA to quantify the major allergen of Artemisia vulgaris pollen, Art v 1. Allergy. 2004;59(9):995–1001.CrossRefPubMedGoogle Scholar
  76. 76.
    de la Hoz F, Polo F, Moscoso del Prado J, Selles JG, Lombardero M, Carreira J. Purification of Art v I, a relevant allergen of Artemisia vulgaris pollen. Mol Immunol. 1990;27(7):651–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Heiss S, Fischer S, Müller WD, Weber B, Hirschwehr R, Spitzauer S, Kraft D, Valenta R. Identification of a 60 kd cross-reactive allergen in pollen and plant-derived food. J Allergy Clin Immunol. 1996;98(5 Pt 1):938–47.CrossRefPubMedGoogle Scholar
  78. 78.
    Nilsen BM, Paulsen BS. Isolation and characterization of a glycoprotein allergen, Art v II, from pollen of mugwort (Artemisia vulgaris L.). Mol Immunol. 1990;27(10):1047–56.CrossRefPubMedGoogle Scholar
  79. 79.
    King TP, Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TA, Thomas W. Allergen nomenclature. WHO/IUIS Allergen Nomenclature Subcommittee. Int Arch Allergy Immunol. 1994;105(3):224–33.CrossRefPubMedGoogle Scholar
  80. 80.
    Nilsen BM, Smestad Paulsen B, Clonis Y, Mellbye KS. Purification of the glycoprotein allergen Ag7 from mugwort pollen by concanavalin A affinity chromatography. J Biotechnol. 1990;16(3-4):305–16.CrossRefPubMedGoogle Scholar
  81. 81.
    Caballero T, Pascual C, Garcia-Ara MC, Ojeda JA, Martin-Esteban M. IgE crossreactivity between mugwort pollen (Artemisia vulgaris) and hazelnut (Abellana nux) in sera from patients with sensitivity to both extracts. Clin Exp Allergy. 1997;27(10):1203–11.CrossRefPubMedGoogle Scholar
  82. 82.
    Park JW, Ko SH, Kim CW, Jeoung BJ, Hong CS. Identification and characterization of the major allergen of the Humulus japonicus pollen. Clin Exp Allergy. 1999;29(8):1080–6.CrossRefPubMedGoogle Scholar
  83. 83.
    Park HS, Nahm DH, Suh CH, Lee SM, Choi SY, Jung KS, Lee SY, Park K. Evidence of Hop Japanese pollinosis in Korea: IgE sensitization and identification of allergenic components. J Allergy Clin Immunol. 1997;100(4):475–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Calabozo B, Barber D, Polo F. Purification and characterization of the main allergen of Plantago lanceolata pollen, Pla I 1. Clin Exp Allergy. 2001;31(2):322–30.CrossRefPubMedGoogle Scholar
  85. 85.
    Sastre J. Molecular diagnosis in allergy. Clin Exp Allergy. 2010;40(10):1442–60.CrossRefPubMedGoogle Scholar
  86. 86.
    Orovitg A, Guardia P, Barber D, de la Torre F, Rodríguez R, Villalba M, Salcedo G, Monteseirìn J, Conde J. Enhanced diagnosis of pollen allergy using specific immunoglobulin E determination to detect major allergens and panallergens. J Investig Allergol Clin Immunol. 2011;21(4):253–9.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jae-Won Oh
    • 1
  1. 1.Division of Allergy and Clinical Immunology, Department of PediatricsHanyang University College of MedicineSeoulRepublic of Korea

Personalised recommendations