Skip to main content

Role of Photodynamic Therapy in Cancer Treatment

  • Chapter
  • First Online:
Photocarcinogenesis & Photoprotection

Abstract

Cancer is one of the most fatal diseases next only to cardiovascular diseases spread all around the globe, and it is the third most fatal disease in India. Environmental factors such as chemicals, UV light, tobacco products, X-rays, viruses, and disturbance in oncogenes are the factors which induce mutations that are inheritable and result in cancer. PDT comprises of three essential components: photosensitizer (PS), light, and oxygen. Oxygen in the form of reactive oxygen species can be toxic and may lead to cell death via necrosis or apoptosis. PDT is a two-stage procedure. Administration of a light-sensitive PS is followed by irradiation of tumor loci with a light of appropriate wavelength. This chapter describes about oncogenes and role of photodynamic therapy in treatment of oncogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern RS (2010) Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch Dermatol 146(3):279–282

    Article  Google Scholar 

  2. Calzavara-Pinton PG, Venturini M, Sala R (2007) Photodynamic therapy: update 2006. Part 1: photochemistry and photobiology. J Eur Acad Dermatol Venereol 21:293–302

    Article  CAS  Google Scholar 

  3. Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905

    Article  CAS  Google Scholar 

  4. Allison RR, Mang TS, Wilson BD (1998) Photodynamic therapy for the treatment of nonmelanomatous cutaneous malignancies. Semin Cutan Med Surg 17(2):153–163

    Article  CAS  Google Scholar 

  5. Bernstein ZP, Wilson BD, Oseroff AR et al (1999) Photofrin photodynamic therapy for treatment of AIDS-related cutaneous Kaposi’s sarcoma. AIDS 13(13):1697–1704

    Article  CAS  Google Scholar 

  6. Allison R, Mang T, Hewson G et al (2001) Photodynamic therapy for chest wall progression from breast carcinoma is an underutilized treatment modality. Cancer 91(1):1–8

    Article  CAS  Google Scholar 

  7. Nielsen TO, Friis-Hansen L, Poulsen SS, Federspiel B, Sorensen BS (2014) Expression of the EGF family in gastric cancer: downregulation of HER4 and its activating ligand NRG4. PLoS One 9(4):e94606

    Article  Google Scholar 

  8. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Science 277:242–245

    Article  CAS  Google Scholar 

  9. Broek D et al (1987) The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799

    Article  CAS  Google Scholar 

  10. Land H, Parada LF, Weinberg RA (1983) Cellular oncogenes and multi-step carcinogenesis. Science 222:771–778

    Article  CAS  Google Scholar 

  11. Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23:7906–7909. https://doi.org/10.1038/sj.onc.120816

    Article  CAS  PubMed  Google Scholar 

  12. Cheng LC, Tavazoie M, Doetsch F (2005) Stem cells: from epigenetics to microRNAs. Neuron 46:363–367

    Article  CAS  Google Scholar 

  13. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  Google Scholar 

  14. Borrello MG, Degl’innocenti D, Pierotti MA (2008) Inflammation and cancer: the oncogene-driven connection. Cancer Lett 267(2):262–270 [PubMed: 18502035]

    Article  CAS  Google Scholar 

  15. Deindl S, Hwang WL, Hota SK, Blosser TR, Prasad P, Bartholomew B, Zhuang X (2013) ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps. Cell 152:442–452

    Article  CAS  Google Scholar 

  16. Keyes WM, Pecoraro M, Aranda V, Lindahl EV, Li W, Vogel H, Guo X, Garcia EL, Michurina VT, Enikolopov G, Muthuswamy KS, Mills AA (2011) Np63a is an oncogene that targets chromatin remodeler Lsh to drive skin stem cell proliferation and tumorigenesis. Cell Stem Cell 8:164–176

    Article  CAS  Google Scholar 

  17. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  Google Scholar 

  18. Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  Google Scholar 

  19. Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM (1983) Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science 222:390–393

    Article  Google Scholar 

  20. Lusser A, Kadonaga JT (2003) Chromatin remodeling by ATP dependent molecular machines. Bioessays 25:1192–1200

    Article  CAS  Google Scholar 

  21. Dueñas CV, Camarero IR, Cobaleda C, García IS (2013) Function of oncogenes in cancer development: a changing paradigm. https://doi.org/10.1038/emboj.2013.97

  22. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet derived growth factor. Physiol Rev 79:1283–1316

    Article  CAS  Google Scholar 

  23. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    Article  CAS  Google Scholar 

  24. Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511

    Article  CAS  Google Scholar 

  25. Bizouarn F (2014) Clinical applications using digital PCR. Methods Mol Biol 1160:189–214. https://doi.org/10.1007/978-1-4939-0733-5_16

    Article  CAS  PubMed  Google Scholar 

  26. Takamizawa J, Konish H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  CAS  Google Scholar 

  27. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6(5):447–458 [PubMed: 15542429]

    Article  CAS  Google Scholar 

  28. Oskarsson T, Trumpp A (2005) The Myc trilogy: lord of RNA polymerases. Nat Cell Biol 7:215–217

    Article  CAS  Google Scholar 

  29. Grosjean P, Wagnieres G, Fontolliet C (1998) Clinical photodynamic therapy for superficial cancer in the oesophagus and the bronchi: 514 nm compared with 630 nm light irradiation after sensitization with photofrin II. Br J Cancer 77(11):1989–1995

    Article  CAS  Google Scholar 

  30. Varmus H (1988) Retroviruses. Science 240:1427–1435

    Article  CAS  Google Scholar 

  31. Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183 (36, 63, 142)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agnihotry, S., Anas, M., Srivastav, A.K., Chopra, D., Upadhayay, J., Mujtaba, S.F. (2018). Role of Photodynamic Therapy in Cancer Treatment. In: Ray, R., Haldar, C., Dwivedi, A., Agarwal, N., Singh, J. (eds) Photocarcinogenesis & Photoprotection. Springer, Singapore. https://doi.org/10.1007/978-981-10-5493-8_14

Download citation

Publish with us

Policies and ethics