Skip to main content

Neutron Irradiation and Material Damage

  • Chapter
  • First Online:
Fusion Neutronics

Abstract

Neutron irradiation causes collision displacement, transmutation and ionization effects in materials, resulting in changes of material microstructure and properties, which is commonly called neutron irradiation damage. The degradation of material properties induced by fusion neutron irradiation poses a serious threat to the structural integrity of the fusion reactor components and to reactor safety, which is a key issue in the development of fusion energy.

This chapter focuses on material damages under fusion neutron irradiation, including the general mechanism of neutron irradiation damage, the influence of neutron irradiation on the microstructure and properties of materials, and the research methods, including experimental and simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ullmaier H, Schilling W (1980) Radiation damage in metallic reactor materials. In: Physics of modern materials, vol I. IAEA, Vienna

    Google Scholar 

  2. Erginsoy C, Vineyard GH, Engliert A (1964) Dynamics of radiation damage in a body-centered cubic lattice. Phys Rev 133:A595–A606

    Article  ADS  Google Scholar 

  3. Aidhy DS, Lu C, Jin K et al (2015) Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater 99:69–76

    Article  Google Scholar 

  4. Odette GR (2014) Recent progress in developing and qualifying nanostructured ferrtic alloys for advanced fission and fusion applications. JOM 66:2427–2441

    Article  ADS  Google Scholar 

  5. Ge HE, Peng L, Dai Y et al (2016) Tensile properties of CLAM steel irradiated up to 20.1 dpa in STIP-V. J Nucl Mater 468:240–245

    Article  ADS  Google Scholar 

  6. Heald PT, Speight MV (1975) Point defect behaviour in irradiated materials. Acta Metall 23:1389–1399

    Article  Google Scholar 

  7. Materna-Morris E, Möslang A, Rolli R et al (2011) Effect of 16.3 dpa neutron irradiation on fatigue lifetime of the RAFM steel EUROFER97. Fusion Eng Des 86:2607–2610

    Article  Google Scholar 

  8. Hatano Y, Shimada M, Alimov VK et al (2013) Trapping of hydrogen isotopes in radiation defects formed in tungsten by neutron and ion irradiations. J Nucl Mater 438:S114

    Article  Google Scholar 

  9. Wu CH, Alessandrini C, Bonal JP et al (2001) Progress of the European R&D on plasma-wall interactions, neutron effects and tritium removal in ITER plasma facing materials. Fusion Eng Des 56–57:179–187

    Article  Google Scholar 

  10. Piazza G, Erbe A, Rolli R et al (2004) Post-irradiation examinations of Li4SiO4 pebbles irradiated in the EXOTIC-8 experiment. J Nucl Mater 329–333:1260–1265

    Google Scholar 

  11. Johnson CE, Kummerer KR, Roth E (1988) Ceramic breeder materials. J Nucl Mater 155–157:188–201

    Article  Google Scholar 

  12. Roux N, Johnson C, Noda K (1992) Properties and performance of tritium breeding ceramics. J Nucl Mater 191–194:15–22

    Article  Google Scholar 

  13. Chen TY, Tesanovic Z, Liu RH et al (2008) The BCS like gap in superconductor SmFeAsO0.85F0.15. Nature 453:1224

    Article  ADS  Google Scholar 

  14. Rao KV, Puzniak R, Chen DX et al (1988) Effects of irradiation—fast neutrons and implantation on sintered Y-Ba-Cu-O superconductors. Physica C 153:347–348

    Article  ADS  Google Scholar 

  15. Wu YC, Song J, Zheng HQ et al (2015) CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann Nucl Energy 82:161–168

    Google Scholar 

  16. Greenwood LR (1994) Neutron interaction and atomic recoil spectra. J Nucl Mater 216:29–44

    Article  ADS  Google Scholar 

  17. Waters LS (1999) MCPNXTM USER’s Manual. Version 2(1):5

    Google Scholar 

  18. Shimakawa S, Sekimura N, Nojiri N (2003–2006) Radiation damage calculation by NPRIM computer code with JENDL 3.3. JAERI-Conference

    Google Scholar 

  19. Wirth BD, Odette GR, Marian J, et al (2004) Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. J Nucl Mater 329–333 Part A:103-111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yican Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wu, Y. (2017). Neutron Irradiation and Material Damage. In: Fusion Neutronics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5469-3_4

Download citation

Publish with us

Policies and ethics