Skip to main content

Neutron Transport Theory and Simulation

  • Chapter
  • First Online:
Book cover Fusion Neutronics

Abstract

Devoted to describing neutron movement in media and the corresponding laws, neutron transport theory is the research basis for transmutation and activation, radiation damage to materials, radiation dose, and biological safety, among other topics. There are two methods for neutron transport calculation: the Monte Carlo method (also called the probabilistic method or the stochastic method) and the deterministic method. This chapter introduces the basic principles of neutron interactions with matter, neutron transport theory, simulation methods and codes for fusion neutron transport calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamarsh JR (1966) Introduction to nuclear reactor theory. Addison-Wesley Publication Company, Massachusetts

    Google Scholar 

  2. Lewis EE, Miller WF Jr (1993) Computational methods of neutron transport. American Nuclear Society, La Grange Park, Illinois

    Google Scholar 

  3. Wilson RPH, Feder R, Fischer U et al (2008) State-of-art 3-D radiation transport methods for fusion energy system. Fusion Eng Des 83:824–833

    Article  Google Scholar 

  4. Wu YC, Song J, Zheng HQ et al (2015) CAD-Based Monte Carlo Program for integrated simulation of nuclear system SuperMC. Ann Nucl Energy 82:161–168

    Article  Google Scholar 

  5. Song J, Sun GY, Chen ZP et al (2015) Study on Monte Carlo K-effective calculation method. Nuclear Sci Eng 35(2): 241–245 (in Chinese)

    Google Scholar 

  6. Haghighat A, Wagner JC (2003) Monte Carlo variance reduction with deterministic importance functions. Prog Nuclear Energy 42(1):25–53

    Article  Google Scholar 

  7. Zhao JB, Li XM, Wu B et al (2016) An automatic adaptive mesh generation method for weight window in Monte Carlo particle transport. Ann Nuclear Energy 91:105–110

    Article  Google Scholar 

  8. Wagner JC, Blakeman ED, Peplow DE (2007) Forward-weighted CADIS method for global variance reduction. Trans Am Nuclear Soc 97:630–633

    Google Scholar 

  9. Davis A, Turner A (2011) Comparison of global variance reduction techniques for Monte Carlo radiation transport simulations of ITER. Fusion Eng Des 86(9–11):2698–2700

    Article  Google Scholar 

  10. Zhang S, Yu SP, He P (2016) Verification of SuperMC with ITER C-Lite neutronic model. Fusion Eng Des 113:126–130

    Article  Google Scholar 

  11. Chen ZP, Song J, Wu B et al (2015) Optimal spatial subdivision method for improving geometry navigation performance in Monte Carlo particle transport simulation. Ann Nuclear Energy 76:479–484

    Article  Google Scholar 

  12. Askew JR (1972) A characteristics formulation of the neutron transport equation in complicated geometries. Report AEEW-M 1108. United Kingdom Atomic Energy Establishment, Winfrith, England

    Google Scholar 

  13. Bell GI, Glasstone S (1970) Nuclear reactor theory. Van Nostrand Reihold Company, New York

    Google Scholar 

  14. Wu YC, Xie ZS, Fischer U (1999) A discrete ordinates nodal method for one-dimensional neutron transport calculation in curvilinear geometries. Nuclear Sci Eng 133:350–357

    Article  Google Scholar 

  15. Azmy Y, Sartori E (2010) Nuclear computational science: a century in review. Springer, Berlin

    Book  Google Scholar 

  16. Wu YC, Team FDS (2009) CAD-based interface programs for fusion neutron transport simulation. Fusion Eng Des 84(7–11):1987–1992

    Article  Google Scholar 

  17. X-5 Monte Carlo Team (2003) MCNP-A general Monte Carlo N-particle Transport Code, Version 5. LA-UR-03-1987, Los Alamos National Laboratory

    Google Scholar 

  18. Brun E, Damian F, Diop CM et al (2015) TRIPOLI-4, CEA, EDF and AREVA reference Monte Carlo code. Ann Nucl Energy 82:151–160

    Article  Google Scholar 

  19. Leppanen J, Pusa M, Vitanen T (2015) The serpent Monte Carlo code: status, development and applications in 2013. Ann Nucl Energy 82:142–150

    Article  Google Scholar 

  20. Tabbakh F (2016) Particles transportation and nuclear heating in a tokamak by MCNPX and GEANT4. J Nucl Energy 35:401–406

    Google Scholar 

  21. Ferrari A, Sala PR, Fasso A et al (2011) Fluka: a multi-particle transport code. CERN-2005-010, Geneva

    Google Scholar 

  22. Niita K, Sato T, Iwase H et al (2006) PHITS-A particle and heavy ion transport code system. Rad Meas 41(9–10):1080–1090

    Article  Google Scholar 

  23. Oak Ridge National Laboratory (1998) DOORS3.2 one, two- and three dimensional discrete ordinates neutron/photon transport code system. CCC-650, Oak Ridge, Tennessee

    Google Scholar 

  24. Youssef M, Feder R, Batistoni P et al (2013) Benchmarking of the 3-D CAD-based discrete ordinates code “ATTILA” for dose rate calculations against experiment and Monte Carlo calculations. Fusion Eng Des 88:3033–3040

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yican Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wu, Y. (2017). Neutron Transport Theory and Simulation. In: Fusion Neutronics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5469-3_2

Download citation

Publish with us

Policies and ethics