Skip to main content

The Importance of Diagrams, Graphics and Other Visual Representations in STEM Teaching

  • Chapter
  • First Online:
STEM Education in the Junior Secondary

Abstract

In this chapter I look at the way we think of communication and suggest that there is an over-reliance upon linguistic and textual modes at the expense of visual and spatial modes of communication. I argue that schools fail to grasp the significance of the visual nature of communication and the implications for learning within STEM subjects. After making an argument for the importance of visuospatial forms, I provide an extensive review of the cognitive and psychological literature covering various key aspects of visualisation and how it relates to teaching STEM subjects in early secondary education. It is likely that much of this will be novel to STEM teachers yet provides us with new possibilities for opening up classroom pedagogy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198. doi:10.1016/j.learninstruc.2006.03.001.

    Article  Google Scholar 

  • Akopyan, A. (2011). Geometry in figures. Available from: http://www.mccme.ru/~akopyan/papers/EnGeoFigures.pdf

  • Allen, W. (1975). Intellectual abilities and instructional media design. AV Communication Review, 23, 139–170.

    Google Scholar 

  • Anderson-Pence, K., Moyer-Packenham, P., Westenskow, A., Shumway, J., & Jordan, K. (2014). Relationships between visual static models and students’ written solutions to fraction tasks. International Journal for Mathematics Teaching and Learning, 15, 1–18.

    Google Scholar 

  • Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215–241.

    Article  Google Scholar 

  • Baddeley, A. (1998). Imagery and working memory. In M. Dennis, J. Engelkamp, & J. Richardson (Eds.), Cognitive and Neuropsychological approaches to mental imagery, NATO ASI Seriues: Series D. Behavioural and social science, no. 42 (pp. 169–180). Dordrecht, The Netherlands: Martiunus Nijhoff Publishing.

    Google Scholar 

  • Baddeley, A. (2003). Working memory and language: An overview. Journal of Communication Disorders, 3, 189–208.

    Article  Google Scholar 

  • Beck, J., & Wade, M. (2006). The kids are alright. How the gamer generation is Changing the workplace. Boston: Harvard Businbess School Press.

    Google Scholar 

  • Bishop, J. (1978). Developing students’ spatial skills. Science Teacher, 45, 20–23.

    Google Scholar 

  • Brna, P., Cox, R., & Good, J. (2001). Learning to think and communicate with diagram: 14 questions to consider. Artificial Intelligence Review, 15, 115–134.

    Article  Google Scholar 

  • Card, S., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Carney, R., & Levin, J. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14(1), 5–26.

    Article  Google Scholar 

  • Carpenter, P., & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Journal of Experimental Psychology: Applied, 4(2), 75–100.

    Google Scholar 

  • Carpernter, T., Coburn, M., Reys, R., & Wilson, J. (1976). Notes from national assessment: Addition and subtraction with fractions. Arithmetic Teacher, 23, 137–141.

    Google Scholar 

  • Cheng, Y.-L., & Mix, K. (2014). Spatial training improves children’s mathematics ability. Journal of Cognition and Development, 15(1), 2–11. doi:10.1080/15248372.2012.725186.

    Article  Google Scholar 

  • Clark, R., Nguyen, F., & Sweller, J. (2006). Efficiency in learning. Evidence-based guidelines to manage cognitive load. San Francisco, CA: Pfeiffer.

    Google Scholar 

  • Clements, K. (1983). The question of how spatial ability is defined, and its relevance to mathematics education. Zentralblatt fur Didaktik der Mathematik, 1(1), 8–20.

    Google Scholar 

  • Cooney, J., & Swanson, H. (1987). Memory and learning disabilities: An overview. In H. Swanson (Ed.), Memory and learning disabilities: Advances in learning and behavioral disabilities (pp. 1–40). Greenwich, CT: JAI.

    Google Scholar 

  • Cramer, K., Post, T., & delMas, R. (2002). Initial fraction learning by fourth-and fifth-grade students: A comparison of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33(2), 111–144.

    Article  Google Scholar 

  • Crapo, A. (2002). A cognitive-theoretical approach to the visual representation of modelling context. Doctoral dissertation, Rensselaer Polytechnic Institute.

    Google Scholar 

  • Crapo, A., Waisel, L., Wallace, W., & Willemain, T. (2000). Visualization and the process of modelling: A cognitive-theoretic view. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining. Boston.

    Google Scholar 

  • Darch, C., Carnine, D., & Gersten, R. (1984). Explicit instruction in mathematics problem solving. Journal of Educational Research, 77(6), 351–359.

    Article  Google Scholar 

  • Dawe, L. (1993). Visual imagery and communication in the mathematics classroom. In M. Stevens, A. Waywood, D. Clarke, & J. Izard (Eds.), Communicating mathematics: Perspectives from classroom practice and research (pp. 60–76). Hawthorne, VIC: Australian Council for Educational Research.

    Google Scholar 

  • Dickinson, P., Eade, F., Gough, S., & Hough, S. (2010). Using realistic mathematics education with low to middle attaining pupils in secondary schools. In M. Joubert & P. Andrews (Eds.), Proceedings of the 10th British congress for mathematics education (pp. 73–80).

    Google Scholar 

  • Dienes, Z. (1960). Building up mathematics. London: Hutchinson Educational.

    Google Scholar 

  • Diezmann, C. (1999). Assessing diagram quality. Making a difference to representation. Proceedings of the 22nd annual conference of the Mathematics Education Research Group of Australasia (pp. 185–191). Adelaide: MERGA.

    Google Scholar 

  • Diezmann, C. (2000). The difficulties students experience in generating diagrams for novel problems. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 25th annual conference of the international groups for the psychology of Mathematics education (pp. 241–248). Hiroshima: PME.

    Google Scholar 

  • Diezmann, C., & English, L. (2001). Promoting the use of diagrams as tools for thinking. In A. Cuzco & F. R. Curcio (Eds.), The roles of representation in school Mathematics: 2001 yearbook (pp. 77–89). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Dreyfus, T. (1991). On the status of visual reasoning in mathematics and mathematics education. In F. Furinghetti (Ed.), Proceedings of the 15th conference of the international group for the psychology of mathematics education (Vol. 1, pp. 32–48). Assisi.

    Google Scholar 

  • Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. In Proceedings of the annual meeting of the North American chapter of the international group for the psychology of mathematics education (pp. 3–25).

    Google Scholar 

  • Egan, D., & Schwartz, H. (1979). Chunking in recall of symbolic drawings. Memory & Cognition, 7, 149–158.

    Article  Google Scholar 

  • Eisenberg, T., & Dreyfus, T. (1991). On the reluctance to visualise in mathematics. In W. Zimmerman & S. Cunningham (Eds.), Visualisation in teaching and learning mathematics. Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Eitel, A., & Scheiter, K. (2015). Picture or text first? Explaining sequence effects when learning with pictures and text. Educational Psychology Review, 27, 153–180. doi:10.1007/s10648-014-9264-4.

    Article  Google Scholar 

  • Ellerton, N., & Clements, M. (1994). Fractions: A weeping sore in mathematics education. SET: Research Information for Teachers, 2, 93–96.

    Google Scholar 

  • Garderen, D. V., Scheuermann, A., & Poch, A. (2014). Challenges students identified with a learning disability and as high-achieving experience when using diagrams as a visualization tool to solve mathematics word problems. ZDM Mathematics Education, 46, 135–149. doi:10.1007/s11858-013-0519-1.

    Article  Google Scholar 

  • Gates, P. (2001). What is an/at issue in mathematics education? In P. Gates (Ed.), Issues in mathematics teaching. London: RoutledgeFalmer.

    Chapter  Google Scholar 

  • Gee, J. P. (2007). What video games have to teach us about learning and literacy. Basingstoke, UK: Palgrave.

    Google Scholar 

  • Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J., et al. (2009). Assisting students struggling with mathematics: Response to Intervention (RtI) for elementary and middle schools (NCEE 2009–4060). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.

    Google Scholar 

  • Giaquinto, M. (1992). Visualisation as a means of geometrical discovery. Mind and Language, 7, 381–401.

    Google Scholar 

  • Giaquinto, M. (1993). Visualising in arithmetic. Philosophy and Phenomenological Research, LIII, 385–396.

    Article  Google Scholar 

  • Giaquinto, M. (1994). Epistemology of visual thinking in elementary real analysis. British Journal for the Philosophy Science, 45, 789–813.

    Article  Google Scholar 

  • Giaquinto, M. (2007). Visual thinking in mathematics. An epistemological study. Oxford, UK: Oxford University Press.

    Book  Google Scholar 

  • Hecht, S., Vagi, K., & Torgesen, J. (2007). Fraction skills and proportional reasoning. In D. Berch & M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 121–132). Baltimore: Paul H. Brookes Publishing Co.

    Google Scholar 

  • Hegarty, M. (1992). Mental animation: Inferring motion from static displays. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(5), 1084–1102.

    Google Scholar 

  • Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689.

    Article  Google Scholar 

  • Hittleman, D. (1985). A picture is worth a thousand words…if you know the words. Childhood Education, 62(1), 32–36.

    Article  Google Scholar 

  • Hodgen, J., Brown, M., Küchemann, D., & Coe, R. (2010). Mathematical attainment of English secondary school students: A 30-year comparison. Paper presented at the British Educational Research Association conference. http://www.kcl.ac.uk/sspp/departments/education/research/cppr/Research/pastproj/TISME/Events/Papers/iCCAMS-paper-for-BERA-symposium-2010.pdf

  • Holliday, W., Brunner, L., & Donais, E. (1977). Differential cognitive and affective responses to flow diagrams in science. Journal of Research in Science Teaching, 14, 129–138.

    Article  Google Scholar 

  • Kersch, J., Casey, B., & Young, J. M. (2008). Research on spatial skills and block building in girls and boys. The relationship to later mathematics learning. In O. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics im early childhood Educatioin (pp. 233–251). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Kosslyn, S. (1980). Image and mind. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–99.

    Article  Google Scholar 

  • Lean, G., & Clements, K. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12(3), 267–299.

    Article  Google Scholar 

  • Lesh, R., Post, T., & Behr, M. (1987). Representation and translations amongst representations in mathematical learning. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33–40). Hillsdale, MI: Lawrence Earlbaum Associates.

    Google Scholar 

  • Levie, H., & Lentz, R. (1982). Effects of text illustrations: A review of research. Educational Communication and Technology Journal, 30, 195–232.

    Google Scholar 

  • Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically validating functions of pictures in prose. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: I. Basic research (pp. 51–85). New York: Springer.

    Chapter  Google Scholar 

  • Linn, M., & Peterson, A. (1985). Emergence and characterisation of gender differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.

    Article  Google Scholar 

  • Lord, T. (1985). Enhancing the visual-spatial aptitude of students. Journal of Research in Science Teaching, 22, 395–405.

    Article  Google Scholar 

  • Lord, T. (1990). Enhancing learning in the life sciences through spatial perception. Innovative Higher Education, 15(1), 5–16.

    Article  Google Scholar 

  • Lowrie, T., & Diezmann, C. (2005). Fourth-grade students’ performance on graphical languages in mathematics. In H. Chick & J. Vincent (Eds.), Proceedings of the 29th annual conference of the International Group for the Psychology of mathematics education (Vol. 3, pp. 265–272). Melbourne, VIC: PME.

    Google Scholar 

  • Lowrie, T., & Diezmann, C. (2009). National Numeracy Tests: A graphic tells a thousand words. Australian Journal of Education, 53(2), 141–158.

    Article  Google Scholar 

  • Mastropieri, M., & Scruggs, T. (1989). Constructing more meaningful relationships: Mnemonic instruction for special populations. Educational Psychology Review, 1, 83–111.

    Article  Google Scholar 

  • Mayer, R. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32(1), 1–19.

    Article  Google Scholar 

  • Mayer, R., & Gallini, J. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82(4), 715–726.

    Article  Google Scholar 

  • Morgan, C. (1999). What is the role of diagrams in communication of mathematical activity? In P. Gates (Ed.), Proceedings of thre BSRLM day conference, London Institute of Education (vol. 14, pp. 80–92).

    Google Scholar 

  • Morgan, C. (2004). What is the role of diagrams in communication of mathematical activity? In B. Allen & S. Johnston-Wilder (Eds.), Mathematics education: Exploring the culture of learning (pp. 134–145). London: RoutledgeFalmer.

    Google Scholar 

  • Moyer, J., Sowder, L., Threadgill-Sowder, J., & Moyer, M. (1984). Story problem formats: Drawn versus verbal versus telegraphic. Journal for Research in Mathematics Education, 15(5), 342–351.

    Article  Google Scholar 

  • Moyer-Packenham, P., Ulmer, L., & Anderson, K. (2012). Examining pictorial models and virtual manipulatives for third grade fraction instruction. Journal of Interactive Online Learning, 17(2), 179–212.

    Google Scholar 

  • Mullis, I., Martin, M., Fo, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Boston: TIMSS and PIRLS International Study Centre.

    Google Scholar 

  • Neime, D. (1996). A fraction is not a piece of pie: Assessing exceptional performance and deep understanding in elementary school mathematics. Gifted Child Quarterly, 40(2), 70–80.

    Article  Google Scholar 

  • Nordina, M. S. B., Amina, N. B. M., Subaria, K. B., & Hamida, M. Z. B. A. (2013). Visualization skills and learning style patterns among engineering students at Universiti Teknologi Malaysia. Procedia – Social and Behavioral Sciences, 93, 1769–1775. doi:10.1016/j.sbspro.2013.10.114.

    Article  Google Scholar 

  • O’Donnell, A., Dansereau, D., & Hall, R. (2002, March). Knowledge maps as Scaffolds for cognitive processing. Educational Psychology Review, 14(1), 71–87.

    Google Scholar 

  • Ochs, E., Gonzales, P., & Jacoby, S. (1996). ‘When I come down I’m in the domain state’: Grammar and graphic representation in the interpretive activity of physicists. In E. Ochs, E. Scheglo, & S. Thompson (Eds.), Interaction and Grammar (pp. 328–369). Cambridge, MA: Cambridge University Press.

    Chapter  Google Scholar 

  • Olkun, S. (2003). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, http://www.cimt.plymouth.ac.uk/journal/sinanolkun.pdf

  • Olsen, D. (1977). The languages of instruction: On the literate bias of schooling. In R. Anderson, R. Spiro, & M. Montague (Eds.), Schooling and the Acquisition of Knowledge (pp. 65–69). Hillsdale, MI: Erlbaum.

    Google Scholar 

  • Paivio, A. (1976). Imagery and verbal processes. New York: Holt Reinhardt and Winston.

    Google Scholar 

  • Paivio, A. (1978). A dual coding approach to perception and cognition. In H. Pick & E. Saltzman (Eds.), Modes of perceiving and processing information (pp. 39–52). Hillsdale, MI: Erlbaum.

    Google Scholar 

  • Paivio, A. (1986). Mental representations. A dual coding approach. New York: Oxford University Press.

    Google Scholar 

  • Postigo, Y., & Pozo, J. I. (2004). On the road to Graphicacy: The learning of graphical representation systems. Educational Psychology, 24(5), 623–644. doi:10.1080/0144341042000262944.

    Article  Google Scholar 

  • Presmeg, N. (1986). Visualisation in high school mathematics. For the Learning of Mathematics, 6(3), 42–46.

    Google Scholar 

  • Repovš, G., & Baddeley, A. (2006). The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139(1), 5–21.

    Article  Google Scholar 

  • Robinson, D. (2002, March). Spatial text adjuncts and learning. Educational Psychology Review, 14(1), 1–3.

    Google Scholar 

  • Roth, W.-M. (2002). Reading graphs: Contributions to an integrative concept of literacy. Journal of Curriculum Studies, 34(1), 1–24. doi:10.1080/00220270110068885.

    Article  Google Scholar 

  • Rubenstein, R., & Thompson, A. (2013). Reading visual representations. Mathematics Teaching in the Middle Years, 17(9), 544–550.

    Article  Google Scholar 

  • Rusted, J., & Coltheart, M. (1979). Facilitation of children’s prose recall by the presence of pictures. Memory and Cognition, 7, 354–359.

    Article  Google Scholar 

  • Satoy, M. D. (2004). The music of the primes. Why an unsolved problem in mathematics matters. London: Harper Perennial.

    Google Scholar 

  • Scaife, M., & Rogers, Y. (1996). External cognition: How do graphical representations work? International Journal of Human – Computer Studies, 45, 185–213.

    Article  Google Scholar 

  • Schnotz, W. (1993). Some remarks on the commentary on the relation of dual coding and mental models in graphics comprehension. Learning and Instruction, 3, 247–249.

    Article  Google Scholar 

  • Schnotz, W. (2002). Commentary e Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14(1), 101–120.

    Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representations. Learning and Instruction, 13(2), 141–156.

    Article  Google Scholar 

  • Schnotz, W., Picard, E., & Hron, A. (1993). How do successful and unsuccessful learners use texts and graphics? Lcaming and Instruction, 3, 181–199.

    Article  Google Scholar 

  • Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. Educational Psychology Review, 14(1), 47–69.

    Article  Google Scholar 

  • Stone, D., & Glock, M. (1981). How do young adults read directions with and without pictures? Journal of Educational Psychology, 73(3), 419–426.

    Article  Google Scholar 

  • Strong, S., & Smith, R. (2002). Spatial visualisation: Fundamentals and trends in engineering graphics. Journal of Industrial Technology, 18, 1–6.

    Google Scholar 

  • Stylianou, D. (2002). On the interaction of visualisation and analysis – The negotiation of a visual representation in problem solving. Journal of Mathematical Behavior, 21(3), 303–317.

    Article  Google Scholar 

  • Stylianou, D. (2010). Teachers’ conceptions of representation in middle school mathematics. Journal of Mathematics Teacher Education, 13(4), 325–434. doi:10.1007/s10857-010943-y.

    Article  Google Scholar 

  • Stylianou, D. (2013). An examination of connections in mathematical processes in students’ problem solving: Connections between representing and justifying. Journal of Education and Learning, 2(2), 23–35. doi:10.5539/jel.v2n2p23.

    Article  Google Scholar 

  • Stylianou, D., & Silver, E. (2004). The role of visual representations in advanced mathematical problem solving: An examination of expert-novice similarities and differences. Journal of Mathematical Thinking and Learning, 6(4), 353–387.

    Article  Google Scholar 

  • Tufte, E. (1990). Envisioning information. Cheshire, CT: Graphics Press.

    Google Scholar 

  • Tufte, E. (1997). Visual explanations. Cheshire, CT: Graphics Press.

    Google Scholar 

  • Tufte, E. (2001). The visual display of quantitative information. Cheshire, CT: Graphics Press.

    Google Scholar 

  • Tversky, B. (2010). Visualizing thought. Topics in Cognitive Science, 2, 1–37. doi:10.1111/j.1756-8765.2010.01113.x.

    Article  Google Scholar 

  • Weidenmann, B. (1987). When good pictures fail: An information-processing approach to the effect of illustrations. In H. Mandl & J. Levin (Eds.), Knowledge acquisition from text and pictures (pp. 157–170). Amsterdam: Elsevier.

    Google Scholar 

  • Whiteley, W. (2004). Teaching to see like a mathematician. In G. Malcolm (Ed.), Multidisciplinary approaches to visual representations and interpretations, Studies in Multidisciplinarity (Vol. 2, pp. 279–292). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Winn, W. (1987). Charts, graphs and diagrams in educational materials. In D. Willows & H. Houghton (Eds.), The psychology of illustration (pp. 152–193). New York: Springer.

    Chapter  Google Scholar 

  • Zhang, X., Clements, M. A. K., & Ellerton, N. (2015). Conceptual mis(understandings) of fractions: From area models to multiple embodiments. Mathematics Education Research Journal, 27, 233–261. doi:10.1007/s13394-014-0133-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gates, P. (2018). The Importance of Diagrams, Graphics and Other Visual Representations in STEM Teaching. In: Jorgensen, R., Larkin, K. (eds) STEM Education in the Junior Secondary. Springer, Singapore. https://doi.org/10.1007/978-981-10-5448-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5448-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5447-1

  • Online ISBN: 978-981-10-5448-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics