Skip to main content

The Polar Formalism

  • Chapter
  • First Online:
Anisotropic Elasticity

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 85))

Abstract

The polar formalism, a mathematical technique used to represent plane tensors by invariants and angles, is introduced in this chapter. The theory is fully developed in detail, starting from the pioneer, founding cworks of Verchery to the more recent developments. The algebra of the method is completely given and different topics are developed: the decomposition of the strain energy and the bounds on the polar invariants, a full analysis of all the possible elastic symmetries in plane elasticity, the cases of special plane anisotropic materials, the theory of polar projectors, some cases of interaction between geometry and anisotropy, plane piezoelectricity, anisotropy induced by damage, the polar invariant formulation of strength criteria for anisotropic layers. The chapter ends with different examples of plane anisotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will use the word intrinsic as synonymous of invariant. While invariant has a clear and precise mathematical meaning, a tensorial quantity whose value is preserved under frame changes, the word intrinsic has a more physical signification: it indicates a quantity that characterizes intrinsically a physical property, that belongs, in some sense, to it.

  2. 2.

    Any plane symmetry in 3D corresponds to a symmetry with respect to a straight line in 2D; for the sake of simplicity, and for recalling that we are not in 3D, we will call mirror symmetry any symmetry with respect to a straight line.

  3. 3.

    For the sake of simplicity, we continue to use the standard notation of tensors also when these are considered as matrices, like in Sect. 3.10. As we use the tensorial components also for matrices, i.e. we do not use the Kelvin’s notation, there is no risk of mistakes.

  4. 4.

    To make a comparison, the transformation normally used, cf. Green and Zerna, is defined by the equations \(X^1=z,\ X^2=\overline{z}\). Following the same procedure used here for the Verchery’s transformation, it is easy to check that in this case all the listed properties are no more valid.

  5. 5.

    The order in which the components of a tensor appear in the column is not arbitrary, but obeys to the following rule: the first component is that whose indexes are all 1 and the successive components increase the indexes starting from the right: 1111, 1112, 1121, 1122, 1211, 1212, 1221, 1222 and so on.

  6. 6.

    We continue to indicate a fourth-rank tensor, even in the case of an elastic tensor, by the letter \(\mathbb {T}\) to maintain a wide generality, because the polar representation is valid for any tensor, not only for the stiffness elasticity tensor.

  7. 7.

    In \(\mathbb {R}^2\), a frame is fixed by the choice of a unique parameter: an angle measured from a direction chosen conventionally. Hence, if a tensor has n distinct components, it can have at most \(n-1\) independent invariants.

  8. 8.

    A syzygy is a relation between two or more tensor invariants. The search for syzygies is a crucial point in determining which are the dependent invariants; unfortunately, no general method exists for finding the syzygies.

  9. 9.

    The definition of \(\kappa \) is the same for isotropic or anisotropic materials, and Eq. (4.83) is valid in any case; nevertheless, the mechanical idea in the definition of \(\kappa \) is to measure the mechanical hydrostatic pressure to be done on the material to obtain a unitary change of volume, tr\(\varvec{\varepsilon }=1\); it is somewhat understood, in doing this, that all the mechanical stress produce uniquely a change of volume, not of shape, i.e. that the deformation itself is spherical. This fact is always true not only for isotropic materials, but also for a square symmetric material, Sect. 2.5, hence when \(r_1=0\); in fact, in such a case \(S_{1111}(\theta )=S_{2222}(\theta )\) and \(S_{1112}(\theta )+S_{1222}(\theta )=0\ \forall \theta \). That is why, though Eq. (4.83) has a general validity, the same notion of \(\kappa \) is usually restricted to the use with isotropic materials.

  10. 10.

    The reader should remark that \(V_s\ne V_{sph}\) and \(V_d\ne V_{dev}\), cf. Sect. 2.5.

  11. 11.

    Remembering Eq. (4.54)\(_{3,4}\), we remark that \(\mathsf {T}^{cont}\in \mathbb {R}\) for a material having an axis of mirror symmetry tilted of \(\pi /4\) on the axis of \(x_1\).

  12. 12.

    It is important to preserve, in the set of the independent invariants, the invariant of the highest degree, that is why we keep \(C_1\) in the list.

  13. 13.

    A laminate is said to be quasi-homogeneous if the bending and extension response are uncoupled and equal (Vannucci and Verchery 2001), see Sect. 5.2.8.

  14. 14.

    “Apparently” because if one makes experimental tests on the components of \(\mathbb {S}\) or traces the directional diagrams of its components, they look like those of an ordinarily orthotropic material with \(k=0\), the difference is in the special value get by \(r_0\), Eq. (4.158).

  15. 15.

    We remember, see Sect. 2.1, that we call tensor or index symmetry any equivalence of the positions of an index for two or more components of the elastic tensor.

  16. 16.

    The Kelvin decomposition (Kelvin 1856, 1878), basically consists in the diagonalization of the elasticity matrix as defined in Eq. (2.24); some simple algebraic passages show that the elasticity tensor \(\mathbb {E}\) can be represented as

    $$\begin{aligned} \mathbb {E}=\lambda ^i\mathbb {P}^i,\ \ \ i=1,...,6, \end{aligned}$$

    where the Kelvin projectors \(\mathbb {P}^i\) are fourth-rank dimensionless tensors defined as (no summation over i)

    $$\begin{aligned} \mathbb {P}^i=\mathbf {E}^i\otimes \mathbf {E}^i. \end{aligned}$$

    The scalars \(\lambda ^i\) and the second-rank tensors \(\mathbf {E}^i\) are the couples eigenvalue-eigenvector of the equation (no summation over i)

    $$\begin{aligned} \mathbb {E}\mathbf {E}^i=\lambda ^i\mathbf {E}^i. \end{aligned}$$

    The \(\lambda ^i\) are homogeneous to a modulus, and are called the Kelvin moduli, while the \(\mathbf {E}^i\) are homogeneous to a strain and are called the Kelvin modes.

    Calling Kelvin strains and Kelvin stresses respectively each one of the tensors

    $$\begin{aligned} \varvec{\varepsilon }^i=\mathbb {P}^i\varvec{\varepsilon }, \ \ \varvec{\sigma }^i=\mathbb {P}^i\varvec{\sigma }, \end{aligned}$$

    by their same construction, Kelvin strains and stresses are mutually orthogonal:

    $$\begin{aligned} \varvec{\varepsilon }^i\cdot \varvec{\varepsilon }^j=0,\ \ \varvec{\sigma }^i\cdot \varvec{\sigma }^j=0. \end{aligned}$$

    Let us consider now the strain energy V stored in an elastic body:

    $$\begin{aligned} V=\frac{1}{2}\varvec{\varepsilon }\cdot \mathbb {E}\varvec{\varepsilon }=\frac{1}{2}\lambda ^i\varvec{\varepsilon }^i\cdot \mathbb {P}^i\varvec{\varepsilon }=\frac{1}{2}\lambda ^i\varvec{\varepsilon }^i\cdot \varvec{\varepsilon }^i. \end{aligned}$$

    V can hence be decomposed into three terms \(V^i\),

    $$\begin{aligned} V^i=\frac{1}{2}\lambda ^{\underline{i}}\varvec{\varepsilon }^{\underline{i}}\cdot \varvec{\varepsilon }^{\underline{i}}\ \ \ \forall i\in \{\mathrm {I, II, III}\}, \end{aligned}$$

    each one of these three terms being associated to the corresponding Kelvin mode. For this reason, we will denote them as Kelvin modal energies.

    For more details about the Kelvin decomposition, see Rychlewski (1984), Mehrabadi and Cowin (1990), François (1995, 2012), Desmorat and Marull (2011), de Saxcé and Vallée (2013), Desmorat and Vannucci (2014).

  17. 17.

    In this section, some concepts introduced extensively in Chap. 5 are used; the reader is hence addressed to this chapter to have details, concepts and nomenclature on laminates.

  18. 18.

    The compliance of a structure is defined as the overall work of the external forces acting upon the structure; from the Clapeyron’s Theorem, we have that

    $$\begin{aligned} J=\int _\varOmega \mathbf {f}\cdot \mathbf {u}\ d\omega =\int _\varOmega \varvec{\sigma }\cdot \varvec{\varepsilon }\ d\omega . \end{aligned}$$

    It is evident that, for a given set of applied forces f, the less the compliance, the less the displacements u, i.e. the highest the stiffness. That is why the minimization of the compliance J is often used, in structural optimization, as a standard formulation for the problems of stiffness maximization. This has also some mathematical nice properties: unlike the minimization of the displacement of some specific points of the structure, that are hold by local functionals, J is a global functional, which has important, positive consequences in variational calculus, see for instance (Banichuk 1983).

  19. 19.

    For a proof of this statement, see Vannucci and Desmorat (2015), Sect. 4 and Appendix.

References

  • AAVV. MIL-HDBK - Composite Materials Handbook, vol. 2. Technical report, US Department of Defense (2002)

    Google Scholar 

  • N.V. Banichuk, Problems and Methods of Optimal Structural Design (Plenum Press, New York, 1983)

    Book  Google Scholar 

  • R. Barsotti, S.S. Ligarò, Stress distribution in partly wrinkled anisotropic membranes, in Proceedings of WCCM V Fifth World Congress on Computational Mechanics (Vienna, Austria, 2002)

    Google Scholar 

  • R. Barsotti, P. Vannucci, Wrinkling of orthotropic membranes: an analysis by the polar method. J. Elast. 113, 5–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Barré de Saint-Venant, Sur la question de savoir s’il existe des masses continues et sur la nature probable des dernières particules des corps. Société Philomatique de Paris (1844), pp. 3–15

    Google Scholar 

  • E. Benvenuto, An Introduction to the History of Structural Mechanics, vol. 2 (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  • M. Born, Dynamik der Krystallgitter (Teubner, Leipzig, 1915)

    MATH  Google Scholar 

  • R.G. Boscovich,Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium. Officina Libraria Kaliwodiana (Vienna, Austria, 1758)

    Google Scholar 

  • J.G. Campbell, The in-plane elastic constants of paper. Aust. J. Appl. Sci. 12, 356–357 (1961)

    Google Scholar 

  • D. Capecchi, G. Ruta, P. Trovalusci, Voigt and Poincaré’s mechanistic-energetic approaches to linear elasticity and suggestions for multiscale modelling. Arch. Appl. Mech. 81, 1573–1584 (2011)

    Article  MATH  Google Scholar 

  • A. Catapano, B. Desmorat, P. Vannucci, Invariant formulation of phenomenological failure criteria for orthotropic sheets and optimisation of their strength. Math. Methods Appl.Sci. 35, 1842–1858 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • A.L. Cauchy, Sur l’équilibre et le mouvement d’un système de points matériels sollicités par des forces d’attraction ou de repulsion mutuelle. Exercices de mathématiques 3, 188–212 (1828a)

    Google Scholar 

  • A.L. Cauchy, De la pression ou tension dans un système de points matériels. Exercices de mathématiques 3, 213–236 (1828b)

    Google Scholar 

  • J.L. Chaboche. Le concept de contrainte effective appliqué à l’elasticité et à la viscoplasticité en présence d’un endommagement anisotrope, in Proceedings of Colloque Euromech 115 (Villard-de-Lans, 1979): Comportement mécanique des matériaux anisotropes (Paris, France, 1982), pp. 737–760. Editions du CNRS

    Google Scholar 

  • C.L. Chow, On evolution laws of anisotropic damage. Eng. Fract. Mech. 34, 679–701 (1987)

    Article  Google Scholar 

  • I.M. Daniel, O. Ishai, Engineering Mechanics of Composite Materials (Oxford University Press, Oxford, 1994)

    Google Scholar 

  • G. de Saxcé, C. Vallée, Invariant measures of the lack of symmetry with respect to the symmetry groups of 2d elasticity tensors. J. Elast. 111, 21–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Desmorat, R. Marull, Non-quadratic Kelvin modes based plasticity criteria for anisotropic materials. Int. J. Plast. 27, 328–351 (2011)

    Article  MATH  Google Scholar 

  • B. Desmorat, P. Vannucci, An alternative to the Kelvin decomposition for plane anisotropic elasticity. Math. Methods Appl. Sci. 38, 164–175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • T.C. Doyle, J.L. Ericksen, Nonlinear elasticity. Adv. Appl. Mech. 4, 53–115 (1956)

    Article  MathSciNet  Google Scholar 

  • R. Dugas, Histoire de la mécanique (Editions du Griffon, Neuchâtel, Switzerland, 1950)

    MATH  Google Scholar 

  • M. Epstein, On the wrinkling of anisotropic elastic membranes. J. Elast. 55, 99–109 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • P.J. Falzon, I. Herszberg, Mechanical performance of 2-d braided carbon/epoxy composites. Compos. Sci. Technol. 58, 253–265 (1998)

    Article  Google Scholar 

  • S. Forte. Classi di simmetria in elasticità piana, in Proceedings of AIMETA XVII - 17th Congress of Theoretical and Applied Mechanics (Florence, Italy, 2005)

    Google Scholar 

  • M. François, Idéntification des symétries matérielles de matériaux anisotropes. Ph.D. thesis, University Pierre et Marie Curie, Paris, France (1995)

    Google Scholar 

  • M. François, A damage model based on Kelvin eigentensors and Curie principle. Mech. Mater. 44, 23–34 (2012)

    Article  Google Scholar 

  • D. Gay, Composite Materials Design and Applications, 3rd edn. (CRC Press, Boca Raton, 2014)

    Google Scholar 

  • A. Green, W. Zerna, Theoretical Elasticity (Clarendon, Oxford, 1954)

    MATH  Google Scholar 

  • G. Green, On the laws of refelxion and refraction of light at the common surface of two non-crystallized media. Camb. Philos. Soc. Trans. 7, 245–269 (1839)

    Google Scholar 

  • R. Hill, A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. A 193, 281–297 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  • O. Hoffman, The brittle strength of orthotropic materials. J. Compos. Mater. 1, 200–206 (1967)

    Article  Google Scholar 

  • M. Hono, S. Onogi, Dynamic measurements of physical properties of pulp and paper by audiofrequency sound. J. Appl. Phys. 22, 971–977 (1951)

    Article  Google Scholar 

  • R.M. Jones, Mech. Compos. Mater., 2nd edn. (Taylor & Francis, Philadelphia, 1999)

    Google Scholar 

  • H.H. Landolt, R. Börnstein, Numerical Data and Functional Relationships in Science and Technology, III/29/a, Second and Higher Order Elastic Constants (Springer, Berlin, 1992)

    Google Scholar 

  • F.A. Leckie, E.T. Onat, Tensorial nature of damage measuring internal variables, in In Proceedings of IUTAM Colloquium Physical Non-linearities in Structural Mechanics, ed. by J. Hult, J. Lemaitre (France, Senlis, 1980), pp. 140–155

    Google Scholar 

  • S.G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic Body. English translation (1963), ed. by P. Fern (Holden-Day, San Francisco, CA, 1950)

    Google Scholar 

  • J. Lemaitre, J.L. Chaboche, A. Benallal, R. Desmorat, Mécanique des matériaux solides (Dunod, Paris, 2009)

    Google Scholar 

  • A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover, New York, 1944)

    MATH  Google Scholar 

  • M.M. Mehrabadi, S.C. Cowin, Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43, 15–41 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Miki. Material design of composite laminates with required in-plane elastic properties, in Proceedings of ICCM 4 - Fourth International Conference on Composite Materials (Tokio, Japan, 1982), pp. 1725–1731

    Google Scholar 

  • L.M. Milne-Thomson, Plane Elastic Systems (Springer, Berlin, 1960)

    Book  MATH  Google Scholar 

  • N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (P. Noordhoff Ltd, Gröningen, 1953)

    MATH  Google Scholar 

  • L. Navier, Mémoire sur les lois de l’équilibre et du mouvement des solides élastiques. Mémoires de l’Académie Royale des Sciences de l’Institut National 7, 375–393 (1827)

    Google Scholar 

  • I. Newton. Philosophiae Naturalis Principia Mathematica. J. Streater (London, UK, 1687)

    Google Scholar 

  • M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (Chapmann and Hall/CRC, New York, 2007)

    Book  MATH  Google Scholar 

  • P. Pedersen, On optimal orientation of orthotropic materials. Struct. Optim. 1, 101–106 (1989)

    Article  Google Scholar 

  • P. Pedersen, Combining material and element rotation in one formula. Commun. Appl. Numer. Methods 6, 549–555 (1990a)

    Article  MATH  Google Scholar 

  • P. Pedersen, Bounds on elastic energy in solids of orthotropic materials. Struct. Optim. 2, 55–62 (1990b)

    Article  Google Scholar 

  • A.C. Pipkin, The relaxed eneergydensity for isotropic elastic membranes. IMA J. Appl. Math. 50, 225–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • A.C. Pipkin, Relaxed energy densities for large deformations of membranes. IMA J. Appl. Math. 52, 297–308 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • H. Poincaré, Leçons sur la théorie de l’élasticité (Carré, Paris, 1892)

    MATH  Google Scholar 

  • S.D. Poisson, Traité de mécanique (Courcier, Paris, 1811)

    Google Scholar 

  • S.D. Poisson, Mémoire sur les surfaces élastiques. Mémoires de l’Académie Royale des Sciences de l’Institut National 9, 167–225 (1814–1816)

    Google Scholar 

  • S.D. Poisson, Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémoires de l’Académie Royale des Sciences de l’Institut National 8, 357–570 (1829)

    Google Scholar 

  • E. Reissner. On tension field theory, in Proceedings of 5th International congress on applied Mechanics (1938), pp. 88–92

    Google Scholar 

  • J. Rychlewski, On Hooke’s law. Prikl. Matem. Mekhan. 48, 420–435 (1984)

    MathSciNet  Google Scholar 

  • F. Sidoroff, Description of anisotropic damage. Application to elasticity, in Proceedings of IUTAM Colloquium Physical Non-linearities in Structural Mechanics, ed. By J. Hult, J. Lemaitre (Senlis, France, 1980), pp. 237–244

    Google Scholar 

  • I. Stackgold, The cauchy relations in a molecular theory of elasticity. Q. Appl. Math. 8, 169–186 (1950)

    Article  MathSciNet  Google Scholar 

  • I. Todhunter, K. Pearson, History of the Theory of Elasticity, vol. 1 (Cambridge University Press, Cambridge, 1886)

    Google Scholar 

  • W. Thomson Lord Kelvin, Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc. 146, 481–498 (1856)

    Article  Google Scholar 

  • W. Thomson Lord Kelvin, Mathematical theory of elasticity. Encycl. Br. 7, 819–825 (1878)

    Google Scholar 

  • S.W. Tsai, Strength characteristics of composite materials. Contractor report cr-224, NASA (1965)

    Google Scholar 

  • S.W. Tsai, Strength Theories of Filament Structures, in Fundamental Aspects of Fiber Reinforced Plastic Composites, ed. by R. Schwartz, H. Schwartz (Wiley Interscience, New York, 1968), pp. 3–11

    Google Scholar 

  • S.W. Tsai, T. Hahn, Introduction to Composite Materials (Technomic, Stamford, 1980)

    Google Scholar 

  • S.W. Tsai, E.M. Wu, A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  • E. Valot, P. Vannucci, Some exact solutions for fully orthotropic laminates. Compos. Struct. 69, 157–166 (2005)

    Article  Google Scholar 

  • P. Vannucci, On bending-tension coupling of laminates. J. Elast. 64, 13–28 (2001)

    Article  MATH  Google Scholar 

  • P. Vannucci. HDR thesis. University of Burgundy (2002a), http://tel.archives-ouvertes.fr/tel-00625958/fr/

  • P. Vannucci, A special planar orthotropic material. J. Elast. 67, 81–96 (2002b)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Vannucci, Plane anisotropy by the polar method. Meccanica 40, 437–454 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Vannucci, The polar analysis of a third order piezoelectricity-like plane tensor. Int. J. Solids Struct. 44, 7803–7815 (2007)

    Article  MATH  Google Scholar 

  • P. Vannucci, Influence of invariant material parameters on the flexural optimal design of thin anisotropic laminates. Int. J. Mech. Sci. 51, 192–203 (2009)

    Article  MATH  Google Scholar 

  • P. Vannucci, On special orthotropy of paper. J. Elast. 99, 75–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Vannucci, Strange laminates. Math. Methods Appl. Sci. 35, 1532–1546 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Vannucci, B. Desmorat, Analytical bounds for damage induced planar anisotropy. Int. J. Solids Struct. 60–61, 96–106 (2015)

    Article  Google Scholar 

  • P. Vannucci, B. Desmorat, Plane anisotropic rari-constant materials. Math. Methods Appl. Sci. 39, 3271–3281 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Vannucci, G. Verchery, Stiffness design of laminates using the polar method. Int. J. Solids Struct. 38, 9281–9294 (2001)

    Article  MATH  Google Scholar 

  • P. Vannucci, G. Verchery, A new method for generating fully isotropic laminates. Compos. Struct. 58, 75–82 (2002)

    Article  Google Scholar 

  • P. Vannucci, G. Verchery, Anisotropy of plane complex elastic bodies. Int. J. Solids Struct. 47, 1154–1166 (2010)

    Article  MATH  Google Scholar 

  • G. Verchery. Les invariants des tenseurs d’ordre 4 du type de l’élasticité, in Proceedings of Colloque Euromech 115 (Villard-de-Lans, 1979): Comportement mécanique des matériaux anisotropes (Editions du CNRS, Paris, 1982), pp. 93–104

    Google Scholar 

  • G. Verchery, T.S. Vong, Une méthode d’aide graphique à la conception des séquences d’empilement dans les stratifiés, in Proceedings of JNC5 - Cinquièmes Journées Nationales sur les Composites (Paris, France, 1986), pp. 267–280

    Google Scholar 

  • A. Vincenti, Conception et optimisation des composites stratifiés par méthode polaire et algorithme génétique. Ph.D. thesis, ISAT - University of Burgundy, Nevers, France (2002)

    Google Scholar 

  • A. Vincenti, P. Vannucci, G. Verchery, Influence of orientation errors on quasi-homogeneity of composite laminates. Compos. Sci. Technol. 63, 739–749 (2003)

    Article  Google Scholar 

  • W. Voigt, Lehrbuch der Kristallphysik (B.G. Teubner, Leipzig, 1910)

    MATH  Google Scholar 

  • Y.W. Wong, S. Pellegrino, Wrinkled membranes - Part III: numerical simulations. J. Mech. Mater. Struct. 1, 61–93 (2006)

    Google Scholar 

  • C.H. Wu, Plane linear wrinkle elasticity without body force. Technical report, Departement of Materials Engineering - University of Illinois, Chicago, IL (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Vannucci .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Vannucci, P. (2018). The Polar Formalism. In: Anisotropic Elasticity . Lecture Notes in Applied and Computational Mechanics, vol 85. Springer, Singapore. https://doi.org/10.1007/978-981-10-5439-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5439-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5438-9

  • Online ISBN: 978-981-10-5439-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics