Skip to main content

Non-imaging Method: Bioelectrical Impedance Analysis

  • Chapter
  • First Online:
Best Practice Protocols for Physique Assessment in Sport

Abstract

Bioelectrical impedance analysis allows measurement of total body water, which is used to estimate fat-free body mass and, by difference with body mass, body fat. An athlete appointment of 15 min is needed for body mass and standing stature measurement, electrode placement, and then 1 min of data collection. The method is popular due to the procedure being simple and non-invasive, good portability of the equipment and its relatively low cost compared to other methods of body composition analysis. However, precision and validity can be low without a standardised protocol of assessment that includes guidance for subject presentation. Sensitivity to monitor change of physique is low given variation in athlete presentation for testing can affect the results (e.g. levels of hydration). Training is available from equipment suppliers; however, there are no accreditation systems. The techniques to collect the data are easy; however, interpretation of the data is impeded given the black box approach to the data. Studies that compare results from bioelectrical impedance analysis to other body composition techniques are outlined, and example reports to athletes are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bosy-Westphal A, Later W, Hitze B, Sato T, Kossel E, Giüer CC, Heller M, Müller MJ (2008) Accuracy of bioelectrical impedance consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual x-ray absorptiometry. Obes Facts 1(6):6

    Article  Google Scholar 

  • Brožek J, Grande F, Anderson JT, Keys A (1963) Densitometric analysis of body composition: revision of some qantitative assumptions. Ann N Y Acad Sci 110(1):113–140

    PubMed  Google Scholar 

  • Buchholz AC, Bartok C, Schoeller DA (2004) The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract 19(5):433–446

    Article  PubMed  Google Scholar 

  • Colley RC, Byrne NM, Hills AP (2007) Implications of the variability in time to isotopic equilibrium in the deuterium dilution technique. Eur J Clin Nutr 61(11):1250–1255

    Article  CAS  PubMed  Google Scholar 

  • Cornish BH, Ward LC, Thomas BJ, Jebb SA, Elia M (1996) Evaluation of multiple frequency bioelectrical impedance and Cole-Cole analysis for the assessment of body water volumes in healthy humans. Eur J Clin Nutr 50(3):159–164

    CAS  PubMed  Google Scholar 

  • Dehghan M, Merchant AT (2008) Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J 7(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  • Deurenberg P, Tagliabue A, Schouten FJ (1995) Multi-frequency impedance for the prediction of extracellular water and total body water. Br J Nutr 73(03):349–358

    Article  CAS  PubMed  Google Scholar 

  • Dixon CB, Ramos L, Fitzgerald E, Reppert D, Andreacci JL (2009) The effect of acute fluid consumption on measures of impedance and percent body fat estimated using segmental bioelectrical impedance analysis. Eur J Clin Nutr 63(9):1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Gatterer H, Schenk K, Laninschegg L, Schlemmer P, Lukaski H, Burtscher M (2014) Bioimpedance identifies body fluid loss after exercise in the heat: a pilot study with body cooling. PLoS One 9(10):e109729

    Article  PubMed  PubMed Central  Google Scholar 

  • Heiss CJ, Gara N, Novotny D et al (2009) Effect of a 1 liter fluid load on body composition measured by air displacement plethysmography and bioelectrical impedance. J Exerc Physiol Online 12(2):1–8

    Google Scholar 

  • Kerr A, Slater G, Byrne N, Chaseling J (2015) Validation of bioelectrical impedance spectroscopy to measure total body water in resistance -trained males. Int J Sport Nutr Exerc Metab 25(5):494–503

    Article  PubMed  Google Scholar 

  • Kerr A, Slater GJ, Byrne N (2017) Impact of food and fluid intake on technical and biological measurement error in body composition assessment methods in athletes. Br J Nutr 117(4):591–601

    Article  CAS  PubMed  Google Scholar 

  • Koulmann N, Jimenez C, Regal D, Bolliet P, Launay J-C, Savourey G, Melin B (2000) Use of bioelectrical impedance analysis to estimate body fluid compartments after acute variations of the body hydration level. Med Sci Sports Exerc 32(4):857–864

    Article  CAS  PubMed  Google Scholar 

  • Kushner RF (1992) Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr 11(2):199–209

    CAS  PubMed  Google Scholar 

  • Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior J-C, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C (2004a) Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin Nutr 23(5):1226–1243

    Article  PubMed  Google Scholar 

  • Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, Lilienthal Heitmann B, Kent-Smith L, Melchior J-C, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C (2004b) Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin Nutr 23(6):1430–1453

    Article  PubMed  Google Scholar 

  • Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J, Pichard C (2004c) Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 23(6):1430–1453

    Article  PubMed  Google Scholar 

  • Lukaski HC, Bolonchuk WW (1987) Theory and validation of the tetrapolar bioelectrical impedance method to assess human body composition. In: Ellis KJ, Yasumura S, Morgan WD (eds) In vivo body composition studies, brookhaven national laboratory. The Institute of Physical Sciences in Medicine, New York, NY

    Google Scholar 

  • Martinoli R, Mohamed EI, Maiolo C, Cianci R, Denoth F, Salvadori S, Iacopino L (2003) Total body water estimation using bioelectrical impedance: a meta-analysis of the data available in the literature. Acta Diabetol 40(0):s203–s206

    Article  PubMed  Google Scholar 

  • Meyer NL, Sundgot-Borgen J, Lohman TG, Ackland TR, Stewart AD, Maughan RJ, Smith S, Müller W (2013) Body composition for health and performance: a survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. Br J Sports Med 47(16):1044–1053

    Article  PubMed  Google Scholar 

  • Moon J, Tobkin S, Roberts M, Dalbo V, Kerksick C, Bemben M, Cramer J, Stout J (2008) Total body water estimations in healthy men and women using bioimpedance spectroscopy: a deuterium oxide comparison. Nutr Metab 5(1):7

    Article  Google Scholar 

  • Moon JR, Smith AE, Tobkin SE, Lockwood CM, Kendall KL, Graef JL, Roberts MD, Dalbo VJ, Kerksick CM, Cramer JT, Beck TW, Stout JR (2009) Total body water changes after an exercise intervention tracked using bioimpedance spectroscopy: a deuterium oxide comparison. Clin Nutr 28(5):516–525

    Article  PubMed  Google Scholar 

  • O’Brien C, Young AJ, Sawka MN, Koulmann N, Jimenez C, Regal D, Bolliet P, Launay JC, Savourey G, Melin B (2002) Bioelectrical impedance to estimate changes in hydration status. Int J Sports Med 23(5):361–366

    Article  PubMed  Google Scholar 

  • Pateyjohns IR, Brinkworth GD, Buckley JD, Noakes M, Clifton PM (2006) Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. Obesity 14(11):2064–2070

    Article  PubMed  Google Scholar 

  • Peterson JT, Repovich WES, Parascand CR (2011) Accuracy of consumer grade bioelectrical impedance analysis devices compared to air displacement plethysmography. Int J Exerc Sci 4(3):176–184

    Google Scholar 

  • Rodriguez-Sanchez N, Galloway SD (2015) Errors in dual energy x-ray absorptiometry estimation of body composition induced by hypohydration. Int J Sport Nutr Exerc Metab 25(1):60–68

    Article  PubMed  Google Scholar 

  • Saunders MJ, Blevins JE, Broeder CE (1998) Effects of hydration changes on bioelectrical impedance in endurance trained individuals. Med Sci Sports Exerc 30(6):885–892

    CAS  PubMed  Google Scholar 

  • Sun G, French CR, Martin GR, Younghusband B, Green RC, Xie Y-g, Mathews M, Barron JR, Fitzpatrick DG, Gulliver W, Zhang H (2005) Comparison of multifrequency bioelectrical impedance analysis with dual energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. Am J Clin Nutr 81(1):74–78

    CAS  PubMed  Google Scholar 

  • Svantesson U, Zander M, Klingberg S, Slinde F (2008) Body composition in male elite athletes, comparison of bioelectrical impedance spectroscopy with dual energy X-ray absorptiometry. J Negat Results Biomed 7(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Tinsley GM, Morales E, Forsse JS, Grandjean PW (2017) Impact of acute dietary manipulations on DXA and BIA body composition estimates. Med Sci Sports Exerc 49(4):823–832

    Article  CAS  PubMed  Google Scholar 

  • Utter AC, Lambeth PG (2010) Evaluation of multifrequency bioelectrical impedance analysis in assessing body composition of wrestlers. Med Sci Sports Exerc 42(2):361–367

    Article  PubMed  Google Scholar 

  • Van Loan MD, Mayclin PL (1992) Use of multi-frequency bioelectrical impedance analysis for the estimation of extracellular fluid. Eur J Clin Nutr 46(2):117–124

    PubMed  Google Scholar 

  • van Marken Lichtenbelt W, Westerterp K, Wouters L (1994) Deuterium dilution as a method for determining total body water: effect of test protocol and sampling time. Br J Nutr 72(4):491–497

    Article  PubMed  Google Scholar 

  • Wagner DR, Heyward VH (1999) Techniques of body composition assessment: a review of laboratory and field methods. Res Q Exerc Sport 70(2):135–149

    Article  CAS  PubMed  Google Scholar 

  • Ward LC (2012) Segmental bioelectrical impedance analysis: an update. Curr Opin Clin Nutr Metab Care 15(5):424–429

    Article  PubMed  Google Scholar 

  • Withers RT, LaForgia J, Pillans RK, Shipp NJ, Chatterton BE, Schultz CG, Leaney F (1998) Comparisons of two-, three-, and four-compartment models of body composition analysis in men and women. J Appl Physiol 85(1):238–245

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ava Kerr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kerr, A., Hume, P.A. (2018). Non-imaging Method: Bioelectrical Impedance Analysis. In: Hume, P., Kerr, D., Ackland, T. (eds) Best Practice Protocols for Physique Assessment in Sport. Springer, Singapore. https://doi.org/10.1007/978-981-10-5418-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5418-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5417-4

  • Online ISBN: 978-981-10-5418-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics