Microfluidics-Mass Spectrometry for Cell Analysis

  • Ling Lin
  • Jin-Ming Lin
Part of the Integrated Analytical Systems book series (ANASYS)


Microchip-mass spectrometry has been emerging as excellent analytical tool in the field of complex biological samples analysis. Microchip can play an important role, such as cell culture and sample preparation steps prior to mass spectral identification, which are beneficial from its ability to handle small sample quantities with the potential for high-throughput parallel analysis. Recent progress in chip-mass spectrometry including various approaches that combined microchip devices with electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) is described. Then the main applications of chip-mass spectrometry in proteomics and cell analysis during the recent years are reviewed. We also outlook their implications in the future. The goal of this chapter is to guide new and interested researchers to the important areas and strive toward full integration of microchip and mass spectrometry within biological research field.


Microfluidics Mass spectrometry Sample pretreatment Cell analysis 


  1. 1.
    Bings NH, Skinner CD, Wang C, Colyer CL, Harrison DJ et al (2000) Coupling electrospray mass spectrometry to microfluidic devices with low dead volume connections. In: Harrison DJ, van den Berg, Albert (eds), Micro Total Analysis Systems ’98, Springer, Dordrecht 141–144Google Scholar
  2. 2.
    Astorga-Wells J, Jornvall H, Bergman T (2003) A microfluidic electrocapture device in sample preparation for protein analysis by MALDI mass spectrometry. Anal Chem 75:5213–5219CrossRefGoogle Scholar
  3. 3.
    Grimm RL, Beauchamp JL (2003) Field-induced droplet ionization mass spectrometry. J Phys Chem B 107:14161–14163CrossRefGoogle Scholar
  4. 4.
    Gao D, Li H, Wang N, Lin JM (2012) Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer. Anal Chem 84:9230–9237Google Scholar
  5. 5.
    Ong TH, Kissick DJ, Jansson ET, Com TJ, Romanova EV et al (2015) Classification of large cellular populations and discovery of rare cells using single cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 87:7036–7042CrossRefGoogle Scholar
  6. 6.
    Zhang J, Wu J, Li HF, Chen QS, Lin JM (2015) An in vitro liver model on microfluidic device for analysis of capecitabine metabolite using mass spectrometer as detecto. Biosens Bioelectron 68:322–328CrossRefGoogle Scholar
  7. 7.
    Liu W, Wang NJ, Lin XX, Ma Y, Lin JM (2014) Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell culture. Anal Chem 86:7128–7134CrossRefGoogle Scholar
  8. 8.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71CrossRefGoogle Scholar
  9. 9.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular massesexceeding 10,000 daltons. Anal Chem 60:2299–2301CrossRefGoogle Scholar
  10. 10.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp 2:151–153CrossRefGoogle Scholar
  11. 11.
    Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442:374–380CrossRefGoogle Scholar
  12. 12.
    Ríos A, Escarpa A, González MC, Crevillén AG (2006) Challenges of analytical microsystems. TrAC Trend Anal Chem 25:467–479CrossRefGoogle Scholar
  13. 13.
    Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. introduction, theory, and technology. Anal Chem 74:2623–2636CrossRefGoogle Scholar
  14. 14.
    Auroux PA, Iossifidis D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. analytical standard operations and applications. Anal Chem 74:2637–2652CrossRefGoogle Scholar
  15. 15.
    Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. 3. Recent Developments. Anal Chem 76:3373–3385Google Scholar
  16. 16.
    Dittrich P, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest Advancements and Trends. Anal Chem 78:3887–3907Google Scholar
  17. 17.
    Liu W, Dechev N, Foulds IG, Burke R, Parameswaran A et al (2009) A novel permalloy based magnetic single cell micro array. Lab Chip 9:2381–2390CrossRefGoogle Scholar
  18. 18.
    Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M et al (2010) Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells. Science 329:533–538CrossRefGoogle Scholar
  19. 19.
    Su R, Lin JM, Qu F, Gao Y, Chen Z et al (2004) Capillary electrophoresis microchip coupled with on-line chemiluminescence detection. Anal Chim Acta 508:11–15CrossRefGoogle Scholar
  20. 20.
    Su R, Lin JM, Uchiyama K, Yamada M (2004) Integration of a flow-type chemiluminescence detector on a glass electrophoresis chip. Talanta 64:1024–1029CrossRefGoogle Scholar
  21. 21.
    Koster S, Verpoorte E (2007) A decade of microfluidic analysis coupled with electrospray mass spectrometry: An overview. Lab Chip 7:1394–1412CrossRefGoogle Scholar
  22. 22.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  23. 23.
    Lee J, Soper SA, Murray KK (2009) Microfluidic chips for mass spectrometry-based proteomics. J Mass Spectrom 44:579–593CrossRefGoogle Scholar
  24. 24.
    Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem 1:423–449CrossRefGoogle Scholar
  25. 25.
    Li H, Liu J, Cai Z, Lin JM (2008) Coupling a microchip with electrospray ionization quadrupole time-of-flight mass spectrometer for peptide separation and identification. Electrophoresis 29:1889–1894CrossRefGoogle Scholar
  26. 26.
    Zheng Y, Li H, Guo Z, Lin JM, Cai Z (2007) Chip-based CE coupled to a quadrupole TOF mass spectrometer for the analysis of a glycopeptide. Electrophoresis 28:1305–1311CrossRefGoogle Scholar
  27. 27.
    Chen Q, Wu J, Zhang YD, Lin JM (2012) Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry. Anal Chem 84:1695–1701CrossRefGoogle Scholar
  28. 28.
    Gao D, Liu H, Jiang Y, Lin JM (2013) Recent advances in microfluidics combined with mass spectrometry: technologies and applications. Lab Chip 13:3309–3322CrossRefGoogle Scholar
  29. 29.
    Li H, Zhang Y, Lin JM (2014) Recent advances in coupling techniques of microfluidic device-mass spectrometry for cell analysis. Scientia Sinica Chimica 44(5):777–783CrossRefGoogle Scholar
  30. 30.
    Jie M, Mao S, Li H, Lin JM (2017) Multi-channel microfluidic chip-mass spectrometry platform for cell analysis. Chin Chem Lett. doi: 10.1016/j.cclet.2017.05.024 Google Scholar
  31. 31.
    Wei H, Li H, Lin JM A microfluidic device combined with ESI-Q-TOF mass spectrometer applied to analyze herbicides on a single C30 bead. J Chromatogr A 1216: 9134–9142Google Scholar
  32. 32.
    Mao S, Gao D, Liu W, Wei H, Lin JM (2012) Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. Lab Chip 12(1):219–226CrossRefGoogle Scholar
  33. 33.
    Gao D, Wei H, Guo GS, Lin JM (2010) Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer. Anal Chem 82:5679–5685CrossRefGoogle Scholar
  34. 34.
    Zhang J, Chen F, He Z, Ma Y, Uchiyama K, Lin JM (2016) A novel approach for precisely controlled multiple cell patterning in microfluidic chip by inkjet printing and the detection of drug metabolism and diffusion. Analyst 141:2940–2947CrossRefGoogle Scholar
  35. 35.
    Gao D, Li H, Wang N, Lin JM (2012) Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to mass spectrometer. Anal Chem 84(21):9230–9237Google Scholar
  36. 36.
    Liu W, Lin JM (2016) Online monitoring of lactate efflux by multi-channel microfluidic chip-mass spectrometry for rapid drug evaluation. ACS Sensor 1(4):344–347CrossRefGoogle Scholar
  37. 37.
    Gao D, Liu H, Lin JM, Wang Y, Jiang Y (2013) Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13:978–985CrossRefGoogle Scholar
  38. 38.
    Mao S, Zhang J, Li H, Lin JM (2013) A novel strategy for high throughput signaling molecule detection to study cell–to–cell communication. Anal Chem 85(2):868–876CrossRefGoogle Scholar
  39. 39.
    Wei H, Li H, Mao S, Lin JM (2011) Cell signaling analysis by mass spectrometry under co-culture conditions on an integrated microfluidic device. Anal Chem 83(24):9306–9313CrossRefGoogle Scholar
  40. 40.
    Wu J, Jie M, Dong X, Qi H, Lin JM (2016) Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform. Rapid Commun Mass. SP 30:80–86CrossRefGoogle Scholar
  41. 41.
    Jie M, Li H, Lin L, Zhang J, Lin JM (2016) Integrated microfluidic system for cell co-culture and simulation of drug metabolism. RSC Adv. 6:54564–54572CrossRefGoogle Scholar
  42. 42.
    Wei H, Li H, Gao D, Lin JM (2010) Multi-channel microfluidic devices combined with electrospray ionization quadrupole time-of-flight mass spectrometry applied to the monitoring of glutamate release from neuronal cells. Analyst 135:2043–2050CrossRefGoogle Scholar
  43. 43.
    Sun X, Kelly RT, Tang K, Smith RD (2011) Membrane-based emitter for coupling microfluidics with ultrasensitive nanoelectrospray ionization-mass spectrometry. Anal Chem 83:5797–5803CrossRefGoogle Scholar
  44. 44.
    Yue GE, Roper MG, Jeffery ED, Easley CJ, Balchunas C et al (2005) Glass microfluidic devices with thin membrane voltage junctions for electrospray mass spectrometry. Lab Chip 5:619–627CrossRefGoogle Scholar
  45. 45.
    Hoffmann P, Haeusig U, Schulze P, Belder D (2007) Microfluidic glass chips with an integrated nanospray emitter for coupling to a mass spectrometer. Angew Chem Int Edit 46:4913–4916CrossRefGoogle Scholar
  46. 46.
    Wang D, Bodovitz S (2010) Single cell analysis: The new frontier in ‘omics’. Trends Biotechnol 28:281–290CrossRefGoogle Scholar
  47. 47.
    Amantonico A, Urban PL, Fagerer SR, Balabin RM, Zenobi R (2010) Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms. Anal Chem 82:7394–7400CrossRefGoogle Scholar
  48. 48.
    Lapainis T, Rubakhin SS, Sweedler JV (2009) Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal Chem 81:5858–5864CrossRefGoogle Scholar
  49. 49.
    Xue Q, Foret F, Dunayevskiy YM, Zavracky PM, McGruer NE et al (1997) Multichannel microchip electrospray mass spectrometry. Anal Chem 69:426–430CrossRefGoogle Scholar
  50. 50.
    Schultz GA, Corso TN, Prosser SJ, Zhang S (2000) A fully integrated monolithic microchip electrospray device for mass spectrometry. Anal Chem 72:4058–4063CrossRefGoogle Scholar
  51. 51.
    Kim W, Guo M, Yang P, Wang D (2007) Microfabricated monolithic multinozzle emitters for nanoelectrospray mass spectrometry. Anal Chem 79:3703–3707CrossRefGoogle Scholar
  52. 52.
    Moini M, Jiang L, Bootwala S (2011) High-throughput analysis using gated multi-inlet mass spectrometry. Rapid Commun Mass Sp 25:789–794CrossRefGoogle Scholar
  53. 53.
    Mao P, Wang HT, Yang PD, Wang DJ (2011) Multinozzle emitter arrays for nanoelectrospray mass spectrometry. Anal Chem 83:6082–6089CrossRefGoogle Scholar
  54. 54.
    Baker CA, Roper MG (2012) Online coupling of digital microfluidic devices with mass spectrometry detection using an eductor with electrospray ionization. Anal Chem 84:2955–2960CrossRefGoogle Scholar
  55. 55.
    Ericson C, Phung QT, Horn DM, Peters EC, Fitchett JR et al (2003) An automated noncontact deposition interface for liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 75:2309–2315CrossRefGoogle Scholar
  56. 56.
    Lee J, Soper SA, Murray KK (2009) Development of an efficient on-chip digestion system for protein analysis using MALDI-TOF MS. Analyst 134:2426–2433CrossRefGoogle Scholar
  57. 57.
    Xie W, Gao D, Jin F, Jiang Y, Liu H (2015) Study of phospholipids in single cells using an integrated microfluidic device combined with matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 87:7052–7059CrossRefGoogle Scholar
  58. 58.
    Lazar IM, Kabulski JL (2013) Microfluidic LC device with orthogonal sample extraction for on-chip MALDI-MS detection. Lab Chip 13:2055–2065CrossRefGoogle Scholar
  59. 59.
    Yang M, Nelson R, Ros A (2016) Toward analysis of proteins in single cells: a quantitative approach employing isobaric tags with MALDI mass spectrometry realized with a microfluidic platform. Anal Chem 88:6672–6679CrossRefGoogle Scholar
  60. 60.
    Korenaga A, Chen F, Li H, Uchiyama K, Lin JM (2016) Inkjet automated single cells and matrices printing system for matrix-assisted laser desorption/ionization mass spectrometry. Talanta 162:474–478CrossRefGoogle Scholar
  61. 61.
    Wu J, Jie M, Li H, He Z, Wang S (2017) Gold nanoparticles modified porous silicon chip for SALDI-MS determination of glutathione in cells. Talanta 168:222–229CrossRefGoogle Scholar
  62. 62.
    Zhang C, Manicke NE (2015) Development of a paper spray mass spectrometry cartridge with integrated solid phase extraction for bioanalysis. Anal Chem 87:6212–6219CrossRefGoogle Scholar
  63. 63.
    Wang H, Wu Z, Chen B, He M, Hu B (2015) Chip-based array magnetic solid phase microextraction on-line coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in cells. Analyst 140:5619–5626CrossRefGoogle Scholar
  64. 64.
    Choi K, Boyacı E, Kim J, Seale B, Barrera-Arbelaez L et al (2016) A digital microfluidic interface between solid-phase microextraction and liquid chromatography–mass spectrometry. J Chromatogr A 1444:1–7CrossRefGoogle Scholar
  65. 65.
    Gasilova N, Srzentić K, Qiao L, Liu B, Beck A et al (2016) On-chip mesoporous functionalized magnetic microspheres for protein sequencing by extended bottom-up mass spectrometry. Anal Chem 88:1775–1784CrossRefGoogle Scholar
  66. 66.
    Mikkonen S, Rokhas MK, Jacksén J, Emmer Å (2012) Sample preconcentration in open microchannels combined with MALDI-MS. Electrophoresis 33:3343–3350CrossRefGoogle Scholar
  67. 67.
    Mikkonen S, Jacksén J, Roeraade J, Thormann W, Emmer Å (2016) Microfluidic isoelectric focusing of amyloid beta peptides followed by micropillar-matrix-assisted laser desorption ionization-mass spectrometry. Anal Chem 88:10044–10051CrossRefGoogle Scholar
  68. 68.
    Yang J, Zhu J, Pei R, Oliver JA, Landry DW et al (2016) Integrated microfluidic aptasensor for mass spectrometric detection of vasopressin in human plasma ultrafiltrate. Anal Methods 8:5190–5196CrossRefGoogle Scholar
  69. 69.
    Mellors JS, Jorabchi K, Smith LM, Ramsey JM (2010) Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal Chem 82:967–973CrossRefGoogle Scholar
  70. 70.
    Redman EA, Mellors JS, Starkey JA, Ramsey JM (2016) Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis–mass spectrometry. Anal Chem 88:2220–2226CrossRefGoogle Scholar
  71. 71.
    Cheng H, Liu J, Xu Z, Wang Y, Ye M (2016) Improving sensitivity for microchip electrophoresis interfaced with inductively coupled plasma mass spectrometry using parallel multichannel separation. J Chromatogr A 1461:198–204CrossRefGoogle Scholar
  72. 72.
    Saylor RA, Reid EA, Lunte SM (2015) Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway. Electrophoresis 36:1912–1919CrossRefGoogle Scholar
  73. 73.
    Nordman N, Sikanen T, Moilanen ME, Aura S, Kotiaho T (2011) Rapid and sensitive drug metabolism studies by SU-8 microchip capillary electrophoresis-electrospray ionization mass spectrometry. J Chromatogr A 1218:739–745CrossRefGoogle Scholar
  74. 74.
    Chen FM, Rang Y, Weng Y, Lin LY, Zeng HL et al (2015) Drop-by-drop chemical reaction and sample introduction for capillary electrophoresis. Analyst 140:3953–3959CrossRefGoogle Scholar
  75. 75.
    Dietze C, Schulze S, Ohla S, Gilmore K, Seeberger PH et al (2016) Integrated on-chip mass spectrometry reaction monitoring in microfluidic devices containing porous polymer monolithic columns. Analyst 141:5412–5416CrossRefGoogle Scholar
  76. 76.
    Haynes PA, Roberts TH (2007) Subcellular shotgun proteomics in plants: looking beyond the usual suspects. Proteomics 7:2963–2975CrossRefGoogle Scholar
  77. 77.
    Chao TC, Hansmeier N (2013) Microfluidic devices for high-throughput proteome analyses. Proteomics 13:467–479CrossRefGoogle Scholar
  78. 78.
    Liuni P, Rob T, Wilson DJ (2010) A microfluidic reactor for rapid, low pressure proteolysis with on-chip electrospray ionization. Rapid Commun Mass Sp 24:315–320CrossRefGoogle Scholar
  79. 79.
    Fan HZ, Bao HM, Zhang LY, Chen G (2011) Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis. Proteomics 11:3420–3423CrossRefGoogle Scholar
  80. 80.
    Ji J, Nie L, Qiao L, Li Y, Guo L et al (2012) Proteolysis in microfluidic droplets: An approach to interface protein separation and peptide mass spectrometry. Lab Chip 12:2625–2629CrossRefGoogle Scholar
  81. 81.
    Lee J, Soper SA, Murray KK (2011) A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp 25:693–699CrossRefGoogle Scholar
  82. 82.
    Min Q, Zhang X, Wu R, Zou H, Zhu JJ (2011) A novel magnetic mesoporous silica packed S-shaped microfluidic reactor for online proteolysis of low-MW proteome. Chem Commun 47:10725–10727CrossRefGoogle Scholar
  83. 83.
    Fritzsche S, Hoffmann P, Belder D (2010) Chip electrophoresis with mass spectrometric detection in record speed. Lab Chip 10:1227–1230CrossRefGoogle Scholar
  84. 84.
    Nordman N, Sikanen T, Aura S, Tuomikoski S, Vuorensola K et al (2010) Feasibility of SU-8-based capillary electrophoresis-electrospray ionization mass spectrometry microfluidic chips for the analysis of human cell lysates. Electrophoresis 31:3745–3753CrossRefGoogle Scholar
  85. 85.
    Chambers AG, Mellors JS, Henley WH, Ramsey JM (2011) Monolithic integration of two-dimensional liquid chromatography-capillary electrophoresis and electrospray ionization on a microfluidic device. Anal Chem 83:842–849CrossRefGoogle Scholar
  86. 86.
    Sun X, Kelly RT, Tang K, Smith RD (2010) Ultrasensitive nanoelectrospray ionization-mass spectrometry using poly(dimethylsiloxane) microchips with monolithically integrated emitters. Analyst 135:2296–2302CrossRefGoogle Scholar
  87. 87.
    Wang C, Jemere AB, Harrison DJ (2010) Multifunctional protein processing chip with integrated digestion, solid-phase extraction, separation and electrospray. Electrophoresis 31:3703–3710CrossRefGoogle Scholar
  88. 88.
    Rob T, Gill PK, Golemi-Kotra D, Wilson DJ (2013) An electrospray ms-coupled microfluidic device for sub-second hydrogen/deuterium exchange pulselabelling reveals allosteric effects in enzyme inhibition. Lab Chip 13:2528–2532CrossRefGoogle Scholar
  89. 89.
    Madeira A, Ohman E, Nilsson A, Sjogren B, Andren PE et al (2009) Coupling surface plasmon resonance to mass spectrometry to discover novel protein-protein interactions. Nature Protoc 4:1023–1037CrossRefGoogle Scholar
  90. 90.
    Gao D, Liu H, Lin JM, Wang Y, Jiang Y (2012) Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13:978–985CrossRefGoogle Scholar
  91. 91.
    Chen Q, He Z, Liu W, Lin X, Wu J, Li H, Lin JM (2015) Engineering cell-compatible paper chips for cell culturing, drug screening, and mass spectrometric sensing. Adv. Healthc. Mater. 4:2291–2296CrossRefGoogle Scholar
  92. 92.
    Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369CrossRefGoogle Scholar
  93. 93.
    Rudd PM, Woods RJ, Wormald MR, Opdenakker G, Downing AK et al (1995) The effects of variable glycosylation on the functional activities of ribonuclease, plasminogen and tissue-plasminogen activator. Biochim Biophys Acta 1248:1–10CrossRefGoogle Scholar
  94. 94.
    Rudd PM, Wormald MR, Stanfield RL, Huang M, Mattsson N et al (1999) Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J Mol Biol 293:351–366CrossRefGoogle Scholar
  95. 95.
    Varki A (1993) Biological roles of oligosaccharides - all of the theories are correct. Glycobiology 3:97–130CrossRefGoogle Scholar
  96. 96.
    Iida J, Meijne AML, Knutson JR, Furcht LT, McCarthy JB (1996) Cell surface chondroitin sulfate proteoglycans in tumor cell adhesion, motility and invasion. Semin Cancer Biol 7:155–162CrossRefGoogle Scholar
  97. 97.
    Reitter JN, Means RE, Desrosiers RC, Reitter JN, Means RE et al (1998) A role for carbohydrates in immune evasion in AIDS. Nat Med 4:679–684CrossRefGoogle Scholar
  98. 98.
    Dennis JW, Granovsky M, Warren CE (1999) Protein glycosylation in development and disease. Bioessays News Rev Mol Cell Dev Biol 21:412–421CrossRefGoogle Scholar
  99. 99.
    Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Annu Rev Biochem 72:643–691CrossRefGoogle Scholar
  100. 100.
    Mechref Y, Hu Y, Garcia A, Zhou S, Desantos-Garcia JL et al (2012) Defining putative glycan cancer biomarkers by MS. Bioanalysis 4:2457–2469CrossRefGoogle Scholar
  101. 101.
    Mechref Y, Hu Y, Garcia A, Hussein A (2012) Identifying cancer biomarkers by mass spectrometry-based glycomics. Electrophoresis 33:1755–1767CrossRefGoogle Scholar
  102. 102.
    Tao SJ, Huang YN, Boyes BE, Orlando R (2014) Liquid chromatography-selected reaction monitoring (LC-SRM) approach for the separation and quantitation of sialylated N-glycans linkage isomers. Anal Chem 86:10584–10590CrossRefGoogle Scholar
  103. 103.
    Zhou SY, Hu YL, DeSantos-Garcia JL, Mechref Y (2015) Quantitation of permethylated n-glycans through multiple-reaction monitoring (MRM) LC-MS/MS. J Am Soc Mass Spectr 26:596–603CrossRefGoogle Scholar
  104. 104.
    Dallas DC, Martin WF, Strum JS, Zivkovic AM, Smilowitz JT et al (2011) N-Linked Glycan Profiling of Mature Human Milk by High-Performance Microfluidic Chip Liquid Chromatography Time-of-Flight Tandem Mass Spectrometry. J Agr Food Chem 59:4255–4263CrossRefGoogle Scholar
  105. 105.
    Hua S, An HJ, Ozcan S, Ro GS, Soares S et al (2011) Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst 136:3663–3671CrossRefGoogle Scholar
  106. 106.
    Chu CS, Ninonuevo MR, Clowers BH, Perkins PD, An HJ et al (2009) Profile of native Nlinked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics 9:1939–1951CrossRefGoogle Scholar
  107. 107.
    Nwosu CC, Aldredge DL, Lee H, Lerno LA, Zivkovic AM et al (2012) Comparison of the human and bovine milk Nglycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. J Proteome Res 11:2912–2924CrossRefGoogle Scholar
  108. 108.
    Tao N, Wu S, Kim J, An HJ, Hinde K et al (2011) Evolutionary glycomics: Characterization of milk oligosaccharides in primates. J Proteome Res 10:1548–1557CrossRefGoogle Scholar
  109. 109.
    Leoz MLAD, Gaerlan SC, Strum JS, Dimapasoc LM, Mirmiran M et al (2012) Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res 11:4662–4672CrossRefGoogle Scholar
  110. 110.
    Totten SM, Zivkovic AM, Wu S, Ngyuen U, Freeman SL et al (2012) Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J Proteome Res 11:6124–6133CrossRefGoogle Scholar
  111. 111.
    Zhou H, Castro-Perez J, Lassman ME, Thomas T, Li W et al (2013) Measurement of apo(a) kinetics in humansubjects using a microfluidic device with tandem massspectrometry. Rapid Commun Mass Sp 27:1294–1302CrossRefGoogle Scholar
  112. 112.
    Gallagher R, Dillon L, Grimsley A, Murphy J, Samuelsson K et al (2014) The application of a new microfluidic device for the simultaneous identification and quantitation of midazolam metabolites obtained from a single micro-litre of chimeric mice blood. Rapid Commun Mass Sp 28:1293–1302CrossRefGoogle Scholar
  113. 113.
    Brink FTGVD, Büter L, Odijk M, Olthuis W, Karst U et al (2015) Mass spectrometric detection of short-lived drug metabolites generated in an electrochemical microfluidic chip. Anal Chem 87:1527–1535CrossRefGoogle Scholar
  114. 114.
    Li X, Zhao S, Hu H, Liu YM (2016) A microchip electrophoresis-mass spectrometric platform with double cell lysis nano-electrodes for automated single cell analysis. J Chromatogr A 1451:156–163CrossRefGoogle Scholar
  115. 115.
    Chen F, Lin L, Zhang J, He Z, Uchiyama K et al (2016) Single-cell analysis using drop-on-demand inkjet printing and probe electrospray ionization mass spectrometry. Anal Chem 88:4354–4360CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.National Center for Nanoscience and Technology, Chinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations