Cell Culture and Observation on Microfluidics

Part of the Integrated Analytical Systems book series (ANASYS)


Recent advances in microfluidic systems have led to the development of on-chip culture and observation. The on-chip culture offers several advantages over conventional in vitro culture methods: Reduced cell and reagent consumption, more accurate mimicking of in vivo cellular microenvironment, integrating function modules and controllable mechanical and chemical factors. These advantages support the microfluidic applications in biological science, especially for cellular dynamic study. Based on transparent characteristics of chip substrate, the microfluidic devices can be easily coupled to cell imaging methods and realize bio-application in cellomics. In this chapter, we introduce the development of microfluidic culture and how the microfluidic devices work in cell observations, especially for cell biology.


Microfluidic cell culture Non-destructive observations Cell biology applications 


  1. 1.
    Halldorsson S, Lucumi E, Gómez-Sjöberg R et al (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63:218–231CrossRefGoogle Scholar
  2. 2.
    Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto Calif) 1:423–449CrossRefGoogle Scholar
  3. 3.
    Yu H, Alexander CM, Beebe DJ (2007) Understanding microchannel culture: parameters involved in soluble factor signaling. Lab Chip 7:726–730CrossRefGoogle Scholar
  4. 4.
    Tilles AW, Baskaran H, Roy P et al (2001) Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor. Biotechnol Bioeng 73:379–389CrossRefGoogle Scholar
  5. 5.
    Raty S, Walters EM, Davis J et al (2004) Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4:186–190CrossRefGoogle Scholar
  6. 6.
    Wang L, Sun B, Ziemer KS et al (2010) Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells. J Biomed Mater Res A 93A:1260–1271Google Scholar
  7. 7.
    Yang L, Li L, Tu Q et al (2010) Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Anal Chem 82:6430–6439CrossRefGoogle Scholar
  8. 8.
    Ong SM, Zhang C, Toh YC et al (2008) A gel-free 3D microfluidic cell culture system. Biomaterials 29:3237–3244CrossRefGoogle Scholar
  9. 9.
    Choi J, Kim S, Jung J et al (2011) Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system. Biomaterials 32:7013–7022CrossRefGoogle Scholar
  10. 10.
    Chung S, Sudo R, Mack PJ et al (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9:269–275CrossRefGoogle Scholar
  11. 11.
    Bersini S, Jeon JS, Dubini G et al (2014) A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35:2454–2461CrossRefGoogle Scholar
  12. 12.
    Kim S, Lee H, Chung M et al (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500CrossRefGoogle Scholar
  13. 13.
    Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370CrossRefGoogle Scholar
  14. 14.
    Zheng Y, Chen J, Craven M et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 109:9342–9347CrossRefGoogle Scholar
  15. 15.
    Lee H, Kim S, Chung M et al (2014) A bioengineered array of 3D microvessels for vascular permeability assay. Microvasc Res 91:90–98CrossRefGoogle Scholar
  16. 16.
    Baker BM, Trappmann B, Stapleton SC et al (2013) Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. Lab Chip 13:3246–3252CrossRefGoogle Scholar
  17. 17.
    Park YK, Tu TY, Lim SH et al (2014) In vitro microvessel growth and remodeling within a three-dimensional microfluidic environment. Cell Mol Bioeng 7:15–25CrossRefGoogle Scholar
  18. 18.
    Tourovskaia A, Fauver M, Kramer G et al (2014) Tissue-engineered microenvironment systems for modeling human vasculature. Exp Biol Med (Maywood) 239:1264–1271CrossRefGoogle Scholar
  19. 19.
    Mu X, Zheng W, Xiao L et al (2013) Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip 13:1612–1618CrossRefGoogle Scholar
  20. 20.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  21. 21.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  22. 22.
    Kwapiszewska K, Michalczuk A, Rybka M et al (2014) A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab Chip 14:2096–2104CrossRefGoogle Scholar
  23. 23.
    Ziolkowska K, Stelmachowska A, Kwapiszewski R et al (2013) Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosens Bioelectron 40:68–74CrossRefGoogle Scholar
  24. 24.
    Choi YJ, Park J, Lee SH (2013) Size-controllable networked neurospheres as a 3D neuronal tissue model for Alzheimer’s disease studies. Biomaterials 34:2938–2946CrossRefGoogle Scholar
  25. 25.
    van Duinen V, Trietsch SJ, Joore J et al (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126CrossRefGoogle Scholar
  26. 26.
    Song HH, Park KM, Gerecht S (2014) Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev 79–80:19–29CrossRefGoogle Scholar
  27. 27.
    Novo P, Dell’Aica M, Janasek D et al (2016) High spatial and temporal resolution cell manipulation techniques in microchannels. Analyst 141:1888–1905CrossRefGoogle Scholar
  28. 28.
    Chiang YY, Haeri S, Gizewski C et al (2013) Whole cell quenched flow analysis. Anal Chem 85:11560–11567CrossRefGoogle Scholar
  29. 29.
    Holmes D, Whyte G, Bailey J et al (2014) Separation of blood cells with differing deformability using deterministic lateral displacement(dagger). Interface Focus 4:20140011CrossRefGoogle Scholar
  30. 30.
    Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506CrossRefGoogle Scholar
  31. 31.
    Bruus H (2012) Acoustofluidics 10: scaling laws in acoustophoresis. Lab Chip 12:1578–1586CrossRefGoogle Scholar
  32. 32.
    Pohl HA, Crane JS (1971) Dielectrophoresis of cells. Biophys J 11:711CrossRefGoogle Scholar
  33. 33.
    Salmanzadeh A, Romero L, Shafiee H et al (2012) Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip 12:182–189CrossRefGoogle Scholar
  34. 34.
    Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9:694–710CrossRefGoogle Scholar
  35. 35.
    Del Giudice F, Madadi H, Villone MM et al (2015) Magnetophoresis ‘meets’ viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab Chip 15:1912–1922CrossRefGoogle Scholar
  36. 36.
    Collins DJ, Alan T, Neild A (2014) Particle separation using virtual deterministic lateral displacement (vDLD). Lab Chip 14:1595–1603CrossRefGoogle Scholar
  37. 37.
    Beech JP, Jonsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9:2698–2706CrossRefGoogle Scholar
  38. 38.
    Adams JD, Thevoz P, Bruus H et al (2009) Integrated acoustic and magnetic separation in microfluidic channels. Appl Phys Lett 95:254103CrossRefGoogle Scholar
  39. 39.
    Novo P, Volpetti F, Chu V et al (2013) Control of sequential fluid delivery in a fully autonomous capillary microfluidic device. Lab Chip 13:641–645CrossRefGoogle Scholar
  40. 40.
    Novo P, Chu V, Conde JP (2014) Integrated optical detection of autonomous capillary microfluidic immunoassays: a hand-held point-of-care prototype. Biosens Bioelectron 57:284–291CrossRefGoogle Scholar
  41. 41.
    Hughes AJ, Spelke DP, Xu Z et al (2014) Single-cell western blotting. Nat Methods 11:749–755CrossRefGoogle Scholar
  42. 42.
    Denervaud N, Becker J, Delgado-Gonzalo R et al (2013) A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc Natl Acad Sci U S A 110:15842–15847CrossRefGoogle Scholar
  43. 43.
    Chingozha L, Zhan M, Zhu C et al (2014) A generalizable, tunable microfluidic platform for delivering fast temporally varying chemical signals to probe single-cell response dynamics. Anal Chem 86:10138–10147CrossRefGoogle Scholar
  44. 44.
    Ng AH, Dean Chamberlain M, Situ H et al (2015) Digital microfluidic immunocytochemistry in single cells. Nat Commun 6:7513CrossRefGoogle Scholar
  45. 45.
    Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281CrossRefGoogle Scholar
  46. 46.
    Solari FA, Dell’Aica M, Sickmann A et al (2015) Why phosphoproteomics is still a challenge. Mol BioSyst 11:1487–1493CrossRefGoogle Scholar
  47. 47.
    Nguyen N-T, Wu Z (2004) Micromixers—a review. J Micromech Microeng 15:R1CrossRefGoogle Scholar
  48. 48.
    Enger J, Goksor M, Ramser K et al (2004) Optical tweezers applied to a microfluidic system. Lab Chip 4:196–200CrossRefGoogle Scholar
  49. 49.
    Eriksson E, Enger J, Nordlander B et al (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7:71–76CrossRefGoogle Scholar
  50. 50.
    Umehara S, Wakamoto Y, Inoue I et al (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophy Res Co 305:534–540CrossRefGoogle Scholar
  51. 51.
    Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sensor Actuat B-Chem 92:315–325CrossRefGoogle Scholar
  52. 52.
    Warrick JW, Murphy WL, Beebe DJ (2008) Screening the cellular microenvironment: a role for microfluidics. IEEE Rev Biomed Eng 1:75–93CrossRefGoogle Scholar
  53. 53.
    Yun JY, Jambovane S, Kim S-K et al (2011) Log-scale dose response of inhibitors on a chip. Anal Chem 83:6148–6153CrossRefGoogle Scholar
  54. 54.
    Lucchetta EM, Lee JH, Fu LA et al (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138CrossRefGoogle Scholar
  55. 55.
    Li R, Lv X, Zhang X et al (2016) Microfluidics for cell-cell interactions: a review. Front Chem Sci Eng 10:90–98Google Scholar
  56. 56.
    Dertinger SKW, Jiang X, Li Z et al (2002) Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci U S A 99:12542–12547CrossRefGoogle Scholar
  57. 57.
    Lin X, Chen Q, Liu W et al (2015) Oxygen-induced cell migration and on-line monitoring biomarkers modulation of cervical cancers on a microfluidic system. Sci Rep 5:9643CrossRefGoogle Scholar
  58. 58.
    Vickerman V, Blundo J, Chung S et al (2008) Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8:1468–1477CrossRefGoogle Scholar
  59. 59.
    Mack PJ, Zhang Y, Chung S et al (2009) Biomechanical regulation of endothelium-dependent events critical for adaptive remodeling. J Biol Chem 284:8412–8420CrossRefGoogle Scholar
  60. 60.
    Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci U S A 108:15342–15347CrossRefGoogle Scholar
  61. 61.
    Mosadegh B, Huang C, Park JW et al (2007) Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23:10910–10912CrossRefGoogle Scholar
  62. 62.
    Wu H, Huang B, Zare RN (2006) Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc 128:4194–4195CrossRefGoogle Scholar
  63. 63.
    Abhyankar VV, Lokuta MA, Huttenlocher A et al (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6:389–393CrossRefGoogle Scholar
  64. 64.
    Saadi W, Rhee SW, Lin F et al (2007) Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed Microdevices 9:627–635CrossRefGoogle Scholar
  65. 65.
    Faure-Andre G, Vargas P, Yuseff M-I et al (2008) Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 322:1705–1710CrossRefGoogle Scholar
  66. 66.
    Irimia D, Toner M (2009) Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr Biol-UK 1:506–512CrossRefGoogle Scholar
  67. 67.
    Lucchetta EM, Lee JH, Fu LA et al (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138CrossRefGoogle Scholar
  68. 68.
    Pearce TM, Wilson JA, Oakes SG et al (2005) Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture. Lab Chip 5:97–101CrossRefGoogle Scholar
  69. 69.
    Long T, Ford RM (2009) Enhanced transverse migration of bacteria by chemotaxis in a porous T-sensor. Environ Sci Technol 43:1546–1552CrossRefGoogle Scholar
  70. 70.
    Toh AGG, Wang ZP, Yang C et al (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18Google Scholar
  71. 71.
    Jeon NL, Dertinger SK, Chiu DT et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316CrossRefGoogle Scholar
  72. 72.
    Hung PJ, Lee PJ, Sabounchi P et al (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotech Bioeng 89:1–8CrossRefGoogle Scholar
  73. 73.
    Irimia D, Charras G, Agrawal N et al (2007) Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7:1783–1790CrossRefGoogle Scholar
  74. 74.
    Atencia J, Cooksey GA, Locascio LE (2012) A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 12:309–316CrossRefGoogle Scholar
  75. 75.
    Ahmed T, Shimizu TS, Stocker R (2010) Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano Lett 10:3379–3385CrossRefGoogle Scholar
  76. 76.
    Kothapalli CR, Van Veen E, De Valence S et al (2011) A high-throughput microfluidic assay to study neurite response to growth factor gradients. Lab Chip 11:497–507CrossRefGoogle Scholar
  77. 77.
    Haessler U, Pisano M, Wu M et al (2011) Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci U S A 108:5614–5619CrossRefGoogle Scholar
  78. 78.
    Qasaimeh MA, Gervais T, Juncker D (2011) Microfluidic quadrupole and floating concentration gradient. Nat Commun 2:464CrossRefGoogle Scholar
  79. 79.
    Wang S-J, Saadi W, Lin F et al (2004) Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 300:180–189CrossRefGoogle Scholar
  80. 80.
    Nandagopal S, Wu D, Lin F (2011) Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields. PLoS ONE 6:e18183CrossRefGoogle Scholar
  81. 81.
    Jeon NL, Baskaran H, Dertinger SK et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20:826–830CrossRefGoogle Scholar
  82. 82.
    Barkefors I, Le Jan S, Jakobsson L et al (2008) Endothelial cell migration in stable gradients of vascular endothelial growth factor a and fibroblast growth factor 2 effects on chemotaxis and chemokinesis. J Biol Chem 283:13905–13912CrossRefGoogle Scholar
  83. 83.
    Irimia D, Liu S-Y, Tharp WG et al (2006) Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 6:191–198CrossRefGoogle Scholar
  84. 84.
    Chung BG, Flanagan LA, Rhee SW et al (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5:401–406CrossRefGoogle Scholar
  85. 85.
    Park JY, Hwang CM, Lee SH et al (2007) Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. Lab Chip 7:1673–1680CrossRefGoogle Scholar
  86. 86.
    Gupta K, Kim D-H, Ellison D et al (2010) Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab Chip 10:2019–2031CrossRefGoogle Scholar
  87. 87.
    Li GN, Liu J, Hoffman-Kim D (2008) Multi-molecular gradients of permissive and inhibitory cues direct neurite outgrowth. Ann Biomed Eng 36:889–904CrossRefGoogle Scholar
  88. 88.
    Lin F (2009) A microfluidics-based method for analyzing leukocyte migration to chemoattractant gradients. Method Enzymol 461:333–347CrossRefGoogle Scholar
  89. 89.
    van der Meer AD, Vermeul K, Poot AA et al (2010) A microfluidic wound-healing assay for quantifying endothelial cell migration. Am J Physiol-Heart C 298:H719–H725CrossRefGoogle Scholar
  90. 90.
    Heo Y, Cabrera L, Bormann C et al (2010) Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod 25:613–622CrossRefGoogle Scholar
  91. 91.
    Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466CrossRefGoogle Scholar
  92. 92.
    Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99:769–775Google Scholar
  93. 93.
    Zigmond SH, Hirsch JG (1973) Leukocyte locomotion and chemotaxis new methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med 137:387–410CrossRefGoogle Scholar
  94. 94.
    Kim M, Kim T (2010) Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis Assays. Anal Chem 82:9401–9409CrossRefGoogle Scholar
  95. 95.
    Yap B, Kamm RD (1985) Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J Appl Physiol 98:1930–1939CrossRefGoogle Scholar
  96. 96.
    Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515–545CrossRefGoogle Scholar
  97. 97.
    Toh AG, Wang Z, Yang C et al (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16:1–18CrossRefGoogle Scholar
  98. 98.
    Li R, Lv X, Zhang X, Saeed O, Deng Y (2016) Microfluidics for cell-cell interactions: a review. Front Chem Sci Eng 10:90–98CrossRefGoogle Scholar
  99. 99.
    Huang CP, Lu J, Seon H et al (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9:1740–1748CrossRefGoogle Scholar
  100. 100.
    van der Meer AD, Orlova VV, ten Dijke P et al (2013) Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip 13:3562–3568CrossRefGoogle Scholar
  101. 101.
    Jie M, Li H-F, Lin L et al (2016) Integrated microfluidic system for cell co-culture and simulation of drug metabolism. Rsc Adv 6:54564–54572CrossRefGoogle Scholar
  102. 102.
    Chen Q, Wu J, Zhuang Q et al (2013) Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci Rep 3:2433CrossRefGoogle Scholar
  103. 103.
    Gao D, Liu H, Lin JM et al (2012) Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13:978–985CrossRefGoogle Scholar
  104. 104.
    Wu J, Jie M, Dong X et al (2016) Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform. Rapid Commun Mass Spectrom 30:80–86CrossRefGoogle Scholar
  105. 105.
    Mao S, Zhang J, Li H et al (2013) Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication. Anal Chem 85:868–876CrossRefGoogle Scholar
  106. 106.
    Kane RS, Takayama S, Ostuni E et al (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376CrossRefGoogle Scholar
  107. 107.
    Abhyankar VV, Beebe DJ (2007) Spatiotemporal micropatterning of cells on arbitrary substrates. Anal Chem 79:4066–4073CrossRefGoogle Scholar
  108. 108.
    Chen CS, Jiang X, Whitesides GM (2005) Microengineering the environment of mammalian cells in culture. MRS Bull 30:194–201CrossRefGoogle Scholar
  109. 109.
    Liu W, Li L, Wang X et al (2010) An integrated microfluidic system for studying cell-microenvironmental interactions versatilely and dynamically. Lab Chip 10:1717–1724CrossRefGoogle Scholar
  110. 110.
    Businaro L, De Ninno A, Schiavoni G et al (2013) Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment. Lab Chip 13:229–239CrossRefGoogle Scholar
  111. 111.
    Ostrovidov S, Sakai Y, Fujii T (2011) Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomed Microdevices 13:847–864CrossRefGoogle Scholar
  112. 112.
    Chin L, Luo K, Park W et al (2012) Double-layer hepatocyte tumor co-culture using hydrogel for drug effectivity and specificity analysis. In: Micro electro mechanical systems (MEMS), 2012 IEEE 25th international conference on, IEEE, pp. 808–811Google Scholar
  113. 113.
    Discher DE, Janmey P, Y-l Wang (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143CrossRefGoogle Scholar
  114. 114.
    Trappmann B, Gautrot JE, Connelly JT et al (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649CrossRefGoogle Scholar
  115. 115.
    Fischbach C, Kong HJ, Hsiong SX, Evangelista MB, Yuen W, Mooney DJ (2009) Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc Natl Acad Sci U S A 106:399–404CrossRefGoogle Scholar
  116. 116.
    Gunawan RC, Silvestre J, Gaskins HR et al (2006) Cell migration and polarity on microfabricated gradients of extracellular matrix proteins. Langmuir 22:4250–4258CrossRefGoogle Scholar
  117. 117.
    Haessler U, Teo JCM, Foretay D et al (2012) Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr Biol 4:401–409CrossRefGoogle Scholar
  118. 118.
    Terrill RH, Balss KM, Zhang Y et al (2000) Dynamic monolayer gradients: Active spatiotemporal control of alkanethiol coatings on thin gold films. J Am Chem Soc 122:988–989CrossRefGoogle Scholar
  119. 119.
    Hypolite CL, McLernon TL, Adams DN et al (1997) Formation of microscale gradients of protein using heterobifunctional photolinkers. Bioconjugate Chem 8:658–663CrossRefGoogle Scholar
  120. 120.
    Herbert CB, McLernon TL, Hypolite CL et al (1997) Micropatterning gradients and controlling surface densities of photoactivatable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates. Chem Biol 4:731–737CrossRefGoogle Scholar
  121. 121.
    Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701CrossRefGoogle Scholar
  122. 122.
    Koh WG, Pishko MV (2006) Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors. Anal Bioanal Chem 385:1389–1397CrossRefGoogle Scholar
  123. 123.
    Wu H, Huang B, Zare RN (2006) Generation of complex, static solution gradients in microfluidic channels. J Am Chem Soc 128:4194–4195CrossRefGoogle Scholar
  124. 124.
    Huebner RJ, Lechler T, Ewald AJ (2014) Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 141:1085–1094CrossRefGoogle Scholar
  125. 125.
    Loutherback K, Chen L, Holman HY (2015) Open-channel microfluidic membrane device for long-term FT-IR spectromicroscopy of live adherent cells. Anal Chem 87:4601–4606CrossRefGoogle Scholar
  126. 126.
    Chen L, Choo J (2008) Recent advances in surface‐enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29:1815–1828Google Scholar
  127. 127.
    Wegener J, Keese CR, Giaever I (2000) Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166CrossRefGoogle Scholar
  128. 128.
    Leduc C, Si S, Gautier J et al (2013) A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett 13:1489–1494CrossRefGoogle Scholar
  129. 129.
    Yi L, Lin X, Li H et al (2017) Dynamic imaging of MYC and CDKN1A mRNAs as an indicator of cell G1-phase arrest. Chem Commun 53:1900–1903CrossRefGoogle Scholar
  130. 130.
    Okagbare PI, Soper SA (2009) High throughput single molecule detection for monitoring biochemical reactions. Analyst 134:97–106CrossRefGoogle Scholar
  131. 131.
    Huebner RJ, Lechler T, Ewald AJ (2014) Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 141:1085–1094CrossRefGoogle Scholar
  132. 132.
    Ewald AJ (2013) Practical considerations for long-term time-lapse imaging of epithelial morphogenesis in three-dimensional organotypic cultures. Cold Spring Harb Protoc 2013:100–117Google Scholar
  133. 133.
    Ewald AJ, Brenot A, Duong M et al (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581CrossRefGoogle Scholar
  134. 134.
    Deng S, Yu X, Liu R et al (2016) A two-compartment microfluidic device for long-term live cell detection based on surface plasmon resonance. Biomicrofluidics 10:044109CrossRefGoogle Scholar
  135. 135.
    Underwood JM, Imbalzano KM, Weaver VM et al (2006) The ultrastructure of MCF-10A acini. J Cell Physiol 208:141–148CrossRefGoogle Scholar
  136. 136.
    Ewald AJ, Huebner RJ, Palsdottir H et al (2012) Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci 125:2638–2654CrossRefGoogle Scholar
  137. 137.
    Kitamori T, Tokeshi M, Hibara A et al (2004) Peer reviewed: thermal lens microscopy and microchip chemistry. Anal Chem 76:52 A–60 AGoogle Scholar
  138. 138.
    Lasne D, Blab GA, Berciaud S et al (2006) Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophy J 91:4598–4604CrossRefGoogle Scholar
  139. 139.
    Bagnaninchi PO, Drummond N (2011) Real-time label-free monitoring of adipose-derived stem cell differentiation with electric cell-substrate impedance sensing. Proc Natl Acad Sci U S A 108:6462–6467CrossRefGoogle Scholar
  140. 140.
    Gawad S, Cheung K, Seger U et al (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4:241–251CrossRefGoogle Scholar
  141. 141.
    Chen N-C, Chen C-H, Chen M-K et al (2014) Single-cell trapping and impedance measurement utilizing dielectrophoresis in a parallel-plate microfluidic device. Sens Actuat B-Chem 190:570–577CrossRefGoogle Scholar
  142. 142.
    Wegener J, Keese CR, Giaever I (2000) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166CrossRefGoogle Scholar
  143. 143.
    Caviglia C, Zor K, Canepa S et al (2015) Interdependence of initial cell density, drug concentration and exposure time revealed by real-time impedance spectroscopic cytotoxicity assay. Analyst 140:3623–3629CrossRefGoogle Scholar
  144. 144.
    Liu Q, Wu C, Cai H et al (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114:6423–6461CrossRefGoogle Scholar
  145. 145.
    Reybier K, Ribaut C, Coste A et al (2010) Characterization of oxidative stress in Leishmaniasis-infected or LPS-stimulated macrophages using electrochemical impedance spectroscopy. Biosens Bioelectron 25:2566–2572CrossRefGoogle Scholar
  146. 146.
    Zhou Y, Basu S, Laue E et al (2016) Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens Bioelectron 81:249–258CrossRefGoogle Scholar
  147. 147.
    Manczak R, Fouet M, Courson R et al (2016) Improved on-chip impedimetric immuno-detection of subpopulations of cells toward single-cell resolution. Sens Actua B-Chem 230:825–831CrossRefGoogle Scholar
  148. 148.
    Nwankire CE, Venkatanarayanan A, Glennon T et al (2015) Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens Bioelectron 68:382–389CrossRefGoogle Scholar
  149. 149.
    Gómez-Sjöberg R, Leyrat AA, Pirone DM et al (2007) Versatile, fully automated, microfluidic cell culture system. Anal Chem 79:8557–8563CrossRefGoogle Scholar
  150. 150.
    Park JY, Kim SK, Woo DH et al (2009) Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27:2646–2654CrossRefGoogle Scholar
  151. 151.
    Tan W, Desai TA (2003) Microfluidic patterning of cells in extracellular matrix biopolymers: effects of channel size, cell type, and matrix composition on pattern integrity. Tissue Eng 9:255–267CrossRefGoogle Scholar
  152. 152.
    Tourovskaia A, Figueroa-Masot X, Folch A (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5:14–19CrossRefGoogle Scholar
  153. 153.
    Liedert A, Kaspar D, Blakytny R et al (2006) Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophy Res Commun 349:1–5CrossRefGoogle Scholar
  154. 154.
    Huang W-H, Cheng W, Zhang Z et al (2004) Transport, location, and quantal release monitoring of single cells on a microfluidic device. Anal Chem 76:483–488CrossRefGoogle Scholar
  155. 155.
    Toriello NM, Douglas ES, Thaitrong N et al (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci U S A 105:20173–20178CrossRefGoogle Scholar
  156. 156.
    Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492CrossRefGoogle Scholar
  157. 157.
    Yang M, Li CW, Yang J (2002) Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device. Anal Chem 74:3991–4001CrossRefGoogle Scholar
  158. 158.
    Glasgow IK, Zeringue HC, Beebe DJ et al (1998) Individual embryo transport and retention on a chip. In: Micro total analysis systems’ 98, Springer, pp. 199–202Google Scholar
  159. 159.
    Tamaki E, Sato K, Tokeshi M et al (2002) Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. Anal Chem 74:1560–1564CrossRefGoogle Scholar
  160. 160.
    Kapur R, Giuliano KA, Campana M et al (1999) Streamlining the drug discovery process by integrating miniaturization, high throughput screening, high content screening, and automation on the cellchip™ system. Biomed Microdevices 2:99–109CrossRefGoogle Scholar
  161. 161.
    Hediger S, Sayah A, Horisberger J et al (2001) Modular microsystem for epithelial cell culture and electrical characterisation. Biosens Bioelectron 16:689–694CrossRefGoogle Scholar
  162. 162.
    Cai X, Klauke N, Glidle A et al (2002) Ultra-low-volume, real-time measurements of lactate from the single heart cell using microsystems technology. Anal Chem 74:908–914CrossRefGoogle Scholar
  163. 163.
    Heuschkel MO, Guérin L, Buisson B et al (1998) Buried microchannels in photopolymer for delivering of solutions to neurons in a network. Sens Actuat B-Chem 48:356–361CrossRefGoogle Scholar
  164. 164.
    Chen P, Feng X, Chen D et al (2016) Investigating intercellular calcium waves by microfluidic gated pinched-flow. Sens Actuat B-Chem 234:583–592CrossRefGoogle Scholar
  165. 165.
    Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 10:628–638CrossRefGoogle Scholar
  166. 166.
    Yates LL, Schnatwinkel C, Hazelwood L et al (2013) Scribble is required for normal epithelial cell–cell contacts and lumen morphogenesis in the mammalian lung. Dev Biol 373:267–280CrossRefGoogle Scholar
  167. 167.
    Onodera T, Sakai T, Hsu JC-f et al (2010) Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science 329:562–565Google Scholar
  168. 168.
    Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423:876–881CrossRefGoogle Scholar
  169. 169.
    Chi X, Michos O, Shakya R et al (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17:199–209CrossRefGoogle Scholar
  170. 170.
    Shintu L, Rg Baudoin, Navratil V et al (2012) Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal Chem 84:1840–1848CrossRefGoogle Scholar
  171. 171.
    Do J, Lee S, Han J et al (2008) Development of functional lab-on-a-chip on polymer for point-of-care testing of metabolic parameters. Lab Chip 8:2113–2120CrossRefGoogle Scholar
  172. 172.
    Buehler S, Stubbe M, Gimsa U et al (2011) A decrease of intracellular ATP is compensated by increased respiration and acidification at sub-lethal parathion concentrations in murine embryonic neuronal cells: Measurements in metabolic cell-culture chips. Toxicol Lett 207:182–190CrossRefGoogle Scholar
  173. 173.
    Wang G, McCain ML, Yang L et al (2014) Modeling the mitochondrial cardiomyopathy of Barth syndrome with iPSC and heart-on-chip technologies. Nat Med 20:616CrossRefGoogle Scholar
  174. 174.
    Bavli D, Prill S, Ezra E et al (2016) Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci U S A 113:E2231–E2240CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of ScienceBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations