Skip to main content

Recent Development of Cell Analysis on Microfludics

  • Chapter
  • First Online:
Cell Analysis on Microfluidics

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Cells are basic structural and functional units of living organisms. Understanding the composition, structure and function of cells, and exploring cellular activities, are quite important for the cognition of phenomena and rules of life. Microfluidics, combined with advanced molecular, imaging and bioinformatics techniques, constitute a robust ‘toolbox’ and revolutionize the way for cell biology researches. In microfluidic systems, small amounts of fluids are manipulated using precisely designed channels with dimensions at micrometer level. Various chemical and biological processes can be transferred and integrated in a small single device, achieving multiple chemical and biological functions. Microfluidic technology displays a number of unique merits over conventional approaches, and has been extensively applied to various fields of cell research. In this chapter, we will review the recent developments and outstanding achievements of microfluidic technology in cell researches. Based on the cell study procedure, the main content is divided into four parts: cell culture, cell manipulation , cell stimulation and cell analysis. This review will also discuss the challenges and directions of microfluidic-based cell analysis, providing important references and ideas for the development of biological and medical researches and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barthes J, Ozcelik H, Hindie M, Ndreu-Halili A, Hasan A, Vrana NE (2014) Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014:921905. doi:10.1155/2014/921905

    Article  CAS  Google Scholar 

  2. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411. doi:10.1038/nature05063

    Article  CAS  Google Scholar 

  3. Gattazzo F, Urciuolo A, Bonaldo P (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 1840(8):2506–2519. doi:10.1016/j.bbagen.2014.01.010

    Article  CAS  Google Scholar 

  4. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. doi:10.1038/nm.3394

    Article  CAS  Google Scholar 

  5. Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542. doi:10.1146/annurev-biophys-042910-155306

    Article  CAS  Google Scholar 

  6. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. doi:10.1038/nature05058

    Article  CAS  Google Scholar 

  7. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189. doi:10.1038/nature13118

    Article  CAS  Google Scholar 

  8. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182. doi:10.1039/b820557b

    Article  CAS  Google Scholar 

  9. Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113(4):2550–2583. doi:10.1021/cr300337x

    Article  CAS  Google Scholar 

  10. Livak-Dahl E, Sinn I, Burns M (2011) Microfluidic chemical analysis systems. Annu Rev Chem Biomol Eng 2:325–353. doi:10.1146/annurev-chembioeng-061010-114215

    Article  CAS  Google Scholar 

  11. Salieb-Beugelaar GB, Simone G, Arora A, Philippi A, Manz A (2010) Latest developments in microfluidic cell biology and analysis systems. Anal Chem 82(12):4848–4864. doi:10.1021/ac1009707

    Article  CAS  Google Scholar 

  12. Zhuang Q-C, Ning R-Z, Ma Y, Lin J-M (2016) Recent developments in microfluidic chip for in vitro cell-based research. Chin J Anal Chem 44(4):522–532. doi:10.1016/s1872-2040(16)60919-2

    Article  CAS  Google Scholar 

  13. Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuators B: Chem 92(3):315–325. doi:10.1016/s0925-4005(03)00266-1

    Article  CAS  Google Scholar 

  14. Xiong B, Ren K, Shu Y, Chen Y, Shen B, Wu H (2014) Recent developments in microfluidics for cell studies. Adv Mater 26(31):5525–5532. doi:10.1002/adma.201305348

    Article  CAS  Google Scholar 

  15. Duncombe TA, Tentori AM, Herr AE (2015) Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol 16(9):554–567. doi:10.1038/nrm4041

    Article  CAS  Google Scholar 

  16. Priest C (2010) Surface patterning of bonded microfluidic channels. Biomicrofluidics 4(3):32206. doi:10.1063/1.3493643

    Article  CAS  Google Scholar 

  17. Li Jeon N, Baskaran H, Dertinger SK, Whitesides GM, Van de Water L, Toner M (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830. doi:10.1038/nbt712

  18. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138. doi:10.1038/nature03509

    Article  CAS  Google Scholar 

  19. Araci IE, Brisk P (2014) Recent developments in microfluidic large scale integration. Curr Opin Biotechnol 25:60–68. doi:10.1016/j.copbio.2013.08.014

    Article  CAS  Google Scholar 

  20. Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct 36:213–231. doi:10.1146/annurev.biophys.36.040306.132646

    Article  CAS  Google Scholar 

  21. Wu J, He Z, Chen Q, Lin J-M (2016) Biochemical analysis on microfluidic chips. TrAC Trends Anal Chem 80:213–231. doi:10.1016/j.trac.2016.03.013

    Article  CAS  Google Scholar 

  22. Kellogg RA, Gomez-Sjoberg R, Leyrat AA, Tay S (2014) High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics. Nat Protoc 9(7):1713–1726. doi:10.1038/nprot.2014.120

    Article  CAS  Google Scholar 

  23. Shembekar N, Chaipan C, Utharala R, Merten CA (2016) Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 16(8):1314–1331. doi:10.1039/c6lc00249h

    Article  CAS  Google Scholar 

  24. Joensson HN, Andersson Svahn H (2012) Droplet microfluidics—a tool for single-cell analysis. Angew Chem Int Ed Engl 51(49):12176–12192. doi:10.1002/anie.201200460

    Article  CAS  Google Scholar 

  25. Rothbauer M, Wartmann D, Charwat V, Ertl P (2015) Recent advances and future applications of microfluidic live-cell microarrays. Biotechnol Adv 33(6 Pt 1):948–961. doi:10.1016/j.biotechadv.2015.06.006

    Article  Google Scholar 

  26. Willaert R, Goossens K (2015) Microfluidic bioreactors for cellular microarrays. Fermentation 1(1):38–78. doi:10.3390/fermentation1010038

    Article  Google Scholar 

  27. Mehling M, Tay S (2014) Microfluidic cell culture. Curr Opin Biotechnol 25:95–102. doi:10.1016/j.copbio.2013.10.005

    Article  CAS  Google Scholar 

  28. Halldorsson S, Lucumi E, Gomez-Sjoberg R, Fleming RM (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63:218–231. doi:10.1016/j.bios.2014.07.029

    Article  CAS  Google Scholar 

  29. Shields CW, Reyes CD, Lopez GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249. doi:10.1039/c4lc01246a

    Article  CAS  Google Scholar 

  30. Pappas D (2016) Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems. Analyst 141(2):525–535. doi:10.1039/c5an01778e

    Article  CAS  Google Scholar 

  31. Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32(5):245–253. doi:10.1016/j.tibtech.2014.03.004

    Article  CAS  Google Scholar 

  32. Mach AJ, Adeyiga OB, Di Carlo D (2013) Microfluidic sample preparation for diagnostic cytopathology. Lab Chip 13(6):1011–1026. doi:10.1039/c2lc41104k

    Article  CAS  Google Scholar 

  33. Eicher D, Merten CA (2011) Microfluidic devices for diagnostic applications. Expert Rev Mol Diagn 11(5):505–519. doi:10.1586/ERM.11.25

    Article  Google Scholar 

  34. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218. doi:10.1038/nrd1985

    Article  CAS  Google Scholar 

  35. Neuzi P, Giselbrecht S, Lange K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11(8):620–632. doi:10.1038/nrd3799

    Article  CAS  Google Scholar 

  36. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6(11):908–915. doi:10.1038/nmat2022

    Article  CAS  Google Scholar 

  37. Young EW, Beebe DJ (2010) Fundamentals of microfluidic cell culture in controlled microenvironments. Chem Soc Rev 39(3):1036–1048. doi:10.1039/b909900j

    Article  CAS  Google Scholar 

  38. Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR (2013) Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 7(5):51502. doi:10.1063/1.4826935

    Article  CAS  Google Scholar 

  39. Gao D, Liu H, Jiang Y, Lin J-M, Gao D, Liu H, Jiang Y (2012) Recent developments in microfluidic devices for in vitro cell culture for cell-biology research. TrAC Trends Anal Chem 35:150–164. doi:10.1016/j.trac.2012.02.008

    Article  CAS  Google Scholar 

  40. Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V (2016) Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng Transl Med 1(1):63–81. doi:10.1002/btm2.10013

    Google Scholar 

  41. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15(10):647–664. doi:10.1038/nrm3873

    Article  CAS  Google Scholar 

  42. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230(1):16–26. doi:10.1002/jcp.24683

    Article  CAS  Google Scholar 

  43. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12(4):207–218. doi:10.1089/adt.2014.573

    Article  CAS  Google Scholar 

  44. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126. doi:10.1016/j.copbio.2015.05.002

    Article  CAS  Google Scholar 

  45. Lee DH, Bae CY, Kwon S, Park JK (2015) User-friendly 3D bioassays with cell-containing hydrogel modules: narrowing the gap between microfluidic bioassays and clinical end-users’ needs. Lab Chip 15(11):2379–2387. doi:10.1039/c5lc00239g

    Article  CAS  Google Scholar 

  46. Li XJ, Valadez AV, Zuo P, Nie Z (2012) Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4(12):1509–1525. doi:10.4155/bio.12.133

    Article  CAS  Google Scholar 

  47. Sung KE, Su X, Berthier E, Pehlke C, Friedl A, Beebe DJ (2013) Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS ONE 8(10):e76373. doi:10.1371/journal.pone.0076373

    Article  CAS  Google Scholar 

  48. Chen Q, Utech S, Chen D, Prodanovic R, Lin JM, Weitz DA (2016) Controlled assembly of heterotypic cells in a core-shell scaffold: organ in a droplet. Lab Chip 16(8):1346–1349. doi:10.1039/c6lc00231e

    Article  CAS  Google Scholar 

  49. Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T (2015) Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater 14(7):737–744. doi:10.1038/nmat4294

    Article  CAS  Google Scholar 

  50. Frey O, Misun PM, Fluri DA, Hengstler JG, Hierlemann A (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5:4250. doi:10.1038/ncomms5250

    Article  CAS  Google Scholar 

  51. Misun PM, Rothe J, Schmid YRF, Hierlemann A, Frey O (2016) Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks. Microsyst Nanoeng 2:16022. doi:10.1038/micronano.2016.22

    Article  CAS  Google Scholar 

  52. Chen YC, Lou X, Zhang Z, Ingram P, Yoon E (2015) High-throughput cancer cell sphere formation for characterizing the efficacy of photo dynamic therapy in 3D cell cultures. Sci Rep 5:12175. doi:10.1038/srep12175

    Article  Google Scholar 

  53. Tsutsui H, Yu E, Marquina S, Valamehr B, Wong I, Wu H, Ho CM (2010) Efficient dielectrophoretic patterning of embryonic stem cells in energy landscapes defined by hydrogel geometries. Ann Biomed Eng 38(12):3777–3788. doi:10.1007/s10439-010-0108-1

    Article  Google Scholar 

  54. Physiology in perspective: cell-cell interactions: the physiological basis of communication (2014) Physiology (Bethesda) 29(4):220–221. doi:10.1152/physiol.00031.2014

  55. Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209(2):139–151. doi:10.1530/JOE-10-0377

    Article  CAS  Google Scholar 

  56. Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD (2011) Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics 5(1):13406. doi:10.1063/1.3553237

    Article  CAS  Google Scholar 

  57. Guo F, French JB, Li P, Zhao H, Chan CY, Fick JR, Benkovic SJ, Huang TJ (2013) Probing cell-cell communication with microfluidic devices. Lab Chip 13(16):3152–3162. doi:10.1039/c3lc90067c

    Article  CAS  Google Scholar 

  58. Delamarche E, Tonna N, Lovchik RD, Bianco F, Matteoli M (2013) Pharmacology on microfluidics: multimodal analysis for studying cell-cell interaction. Curr Opin Pharmacol 13(5):821–828. doi:10.1016/j.coph.2013.07.005

    Article  CAS  Google Scholar 

  59. Nahavandi S, Tang SY, Baratchi S, Soffe R, Nahavandi S, Kalantar-zadeh K, Mitchell A, Khoshmanesh K (2014) Microfluidic platforms for the investigation of intercellular signalling mechanisms. Small 10(23):4810–4826. doi:10.1002/smll.201401444

    Article  CAS  Google Scholar 

  60. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112(1):214–219. doi:10.1073/pnas.1417115112

    Article  CAS  Google Scholar 

  61. Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109(34):13515–13520. doi:10.1073/pnas.1210182109

    Article  CAS  Google Scholar 

  62. Kimura H, Yamamoto T, Sakai H, Sakai Y, Fujii T (2008) An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8(5):741–746. doi:10.1039/b717091b

    Article  CAS  Google Scholar 

  63. Chen Q, Wu J, Zhuang Q, Lin X, Zhang J, Lin JM (2013) Microfluidic isolation of highly pure embryonic stem cells using feeder-separated co-culture system. Sci Rep 3:2433. doi:10.1038/srep02433

    Article  Google Scholar 

  64. Liu W, Li L, Wang X, Ren L, Wang X, Wang J, Tu Q, Huang X, Wang J (2010) An integrated microfluidic system for studying cell-microenvironmental interactions versatilely and dynamically. Lab Chip 10(13):1717–1724. doi:10.1039/c001049a

    Article  CAS  Google Scholar 

  65. Lin X, Chen Q, Liu W, Zhang J, Wang S, Lin Z, Lin JM (2015) Oxygen-induced cell migration and on-line monitoring biomarkers modulation of cervical cancers on a microfluidic system. Sci Rep 5:9643. doi:10.1038/srep09643

    Article  CAS  Google Scholar 

  66. Tumarkin E, Tzadu L, Csaszar E, Seo M, Zhang H, Lee A, Peerani R, Purpura K, Zandstra PW, Kumacheva E (2011) High-throughput combinatorial cell co-culture using microfluidics. Integr Biol (Camb) 3(6):653–662. doi:10.1039/c1ib00002k

    Article  CAS  Google Scholar 

  67. Ricoult SG, Goldman JS, Stellwagen D, Juncker D, Kennedy TE (2012) Generation of microisland cultures using microcontact printing to pattern protein substrates. J Neurosci Methods 208(1):10–17. doi:10.1016/j.jneumeth.2012.04.016

    Article  CAS  Google Scholar 

  68. Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26(1):120–126. doi:10.1038/nbt1361

    Article  CAS  Google Scholar 

  69. Cho CH, Park J, Tilles AW, Berthiaume F, Toner M, Yarmush ML (2010) Layered patterning of hepatocytes in co-culture systems using microfabricated stencils. Biotechniques 48(1):47–52. doi:10.2144/000113317

    Article  CAS  Google Scholar 

  70. Edahiro J, Sumaru K, Ooshima Y, Kanamori T (2009) Selective separation and co-culture of cells by photo-induced enhancement of cell adhesion (PIECA). Biotechnol Bioeng 102(4):1278–1282. doi:10.1002/bit.22124

    Article  CAS  Google Scholar 

  71. Gao Y, Broussard J, Haque A, Revzin A, Lin T (2016) Functional imaging of neuron–astrocyte interactions in a compartmentalized microfluidic device. Microsyst Nanoeng 2:15045. doi:10.1038/micronano.2015.45

    Article  CAS  Google Scholar 

  72. Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD, Chung S (2012) Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 7(7):1247–1259. doi:10.1038/nprot.2012.051

    Article  CAS  Google Scholar 

  73. Dura B, Dougan SK, Barisa M, Hoehl MM, Lo CT, Ploegh HL, Voldman J (2015) Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat Commun 6:5940. doi:10.1038/ncomms6940

    Article  CAS  Google Scholar 

  74. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772. doi:10.1038/nbt.2989

    Article  CAS  Google Scholar 

  75. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754. doi:10.1016/j.tcb.2011.09.005

    Article  CAS  Google Scholar 

  76. Lee E, Song HG, Chen CS (2016) Biomimetic on-a-chip platforms for studying cancer metastasis. Curr Opin Chem Eng 11:20–27. doi:10.1016/j.coche.2015.12.001

    Article  Google Scholar 

  77. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14(4):248–260. doi:10.1038/nrd4539

    Article  CAS  Google Scholar 

  78. Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3):185–196. doi:10.1016/j.mvr.2006.02.005

    Article  CAS  Google Scholar 

  79. Tsai M, Kita A, Leach J, Rounsevell R, Huang JN, Moake J, Ware RE, Fletcher DA, Lam WA (2012) In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J Clin Invest 122(1):408–418. doi:10.1172/JCI58753

    Article  CAS  Google Scholar 

  80. Cho H, Seo JH, Wong KH, Terasaki Y, Park J, Bong K, Arai K, Lo EH, Irimia D (2015) Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci Rep 5:15222. doi:10.1038/srep15222

    Article  CAS  Google Scholar 

  81. Toh YC, Lim TC, Tai D, Xiao G, van Noort D, Yu H (2009) A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9(14):2026–2035. doi:10.1039/b900912d

    Article  CAS  Google Scholar 

  82. Carraro A, Hsu WM, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, Swart EF, Kaazempur-Mofrad M, Borenstein JT, Vacanti JP, Neville C (2008) In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices 10(6):795–805. doi:10.1007/s10544-008-9194-3

    Article  Google Scholar 

  83. Huh D, Fujioka H, Tung YC, Futai N, Paine R 3rd, Grotberg JB, Takayama S (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci U S A 104(48):18886–18891. doi:10.1073/pnas.0610868104

    Article  CAS  Google Scholar 

  84. Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, McAlexander MA, Ingber DE (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):159ra147. doi:10.1126/scitranslmed.3004249

  85. Jang KJ, Suh KY (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42. doi:10.1039/b907515a

    Article  CAS  Google Scholar 

  86. Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R (2016) Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 34(2):156–170. doi:10.1016/j.tibtech.2015.11.001

    Article  CAS  Google Scholar 

  87. Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13(18):3599–3608. doi:10.1039/c3lc50350j

    Article  CAS  Google Scholar 

  88. Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24):4165–4173. doi:10.1039/c1lc20557a

    Article  CAS  Google Scholar 

  89. Park SH, Sim WY, Min BH, Yang SS, Khademhosseini A, Kaplan DL (2012) Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS ONE 7(9):e46689. doi:10.1371/journal.pone.0046689

    Article  CAS  Google Scholar 

  90. Grosberg A, Nesmith AP, Goss JA, Brigham MD, McCain ML, Parker KK (2012) Muscle on a chip: in vitro contractility assays for smooth and striated muscle. J Pharmacol Toxicol Methods 65(3):126–135. doi:10.1016/j.vascn.2012.04.001

    Article  CAS  Google Scholar 

  91. Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-Teschl C, Lopez JA, Stroock AD (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 109(24):9342–9347. doi:10.1073/pnas.1201240109

    Article  CAS  Google Scholar 

  92. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A, Hamilton GA, Ingber DE (2013) Microfabrication of human organs-on-chips. Nat Protoc 8(11):2135–2157. doi:10.1038/nprot.2013.137

    Article  CAS  Google Scholar 

  93. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668. doi:10.1126/science.1188302

    Article  CAS  Google Scholar 

  94. Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee HH, Alves SE, Salmon M, Ferrante TC, Weaver JC, Bahinski A, Hamilton GA, Ingber DE (2016) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13(2):151–157. doi:10.1038/nmeth.3697

    Article  CAS  Google Scholar 

  95. Young EW (2013) Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol (Camb) 5(9):1096–1109. doi:10.1039/c3ib40076j

    Article  CAS  Google Scholar 

  96. Fan Y, Nguyen DT, Akay Y, Xu F, Akay M (2016) Engineering a brain cancer chip for high-throughput drug screening. Sci Rep 6:25062. doi:10.1038/srep25062

    Article  CAS  Google Scholar 

  97. Albanese A, Lam AK, Sykes EA, Rocheleau JV, Chan WC (2013) Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat Commun 4:2718. doi:10.1038/ncomms3718

    Article  CAS  Google Scholar 

  98. Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z (2016) Organ-on-a-chip systems: microengineering to biomimic living systems. Small 12(17):2253–2282. doi:10.1002/smll.201503208

    Article  CAS  Google Scholar 

  99. Yi C, Li C-W, Ji S, Yang M (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560(1–2):1–23. doi:10.1016/j.aca.2005.12.037

    Article  CAS  Google Scholar 

  100. Mu X, Zheng W, Sun J, Zhang W, Jiang X (2013) Microfluidics for manipulating cells. Small 9(1):9–21. doi:10.1002/smll.201200996

    Article  CAS  Google Scholar 

  101. Yarmush ML, King KR (2009) Living-cell microarrays. Annu Rev Biomed Eng 11:235–257. doi:10.1146/annurev.bioeng.10.061807.160502

    Article  CAS  Google Scholar 

  102. Jonczyk R, Kurth T, Lavrentieva A, Walter JG, Scheper T, Stahl F (2016) Living cell microarrays: an overview of concepts. Microarrays (Basel) 5(2). doi:10.3390/microarrays5020011

  103. Chung J, Kim YJ, Yoon E (2011) Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Appl Phys Lett 98(12):123701. doi:10.1063/1.3565236

    Article  CAS  Google Scholar 

  104. Lin L, Chu YS, Thiery JP, Lim CT, Rodriguez I (2013) Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns. Lab Chip 13(4):714–721. doi:10.1039/c2lc41070b

    Article  CAS  Google Scholar 

  105. Chung K, Kim Y, Kanodia JS, Gong E, Shvartsman SY, Lu H (2011) A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 8(2):171–176. doi:10.1038/nmeth.1548

    Article  CAS  Google Scholar 

  106. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, Engstrom A, Zhu H, Sundaresan TK, Miyamoto DT, Luo X, Bardia A, Wittner BS, Ramaswamy S, Shioda T, Ting DT, Stott SL, Kapur R, Maheswaran S, Haber DA, Toner M (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12(7):685–691. doi:10.1038/nmeth.3404

    Article  CAS  Google Scholar 

  107. Lecault V, Vaninsberghe M, Sekulovic S, Knapp DJ, Wohrer S, Bowden W, Viel F, McLaughlin T, Jarandehei A, Miller M, Falconnet D, White AK, Kent DG, Copley MR, Taghipour F, Eaves CJ, Humphries RK, Piret JM, Hansen CL (2011) High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 8(7):581–586. doi:10.1038/nmeth.1614

    Article  CAS  Google Scholar 

  108. Novo P, Dell’Aica M, Janasek D, Zahedi RP (2016) High spatial and temporal resolution cell manipulation techniques in microchannels. Analyst 141(6):1888–1905. doi:10.1039/c6an00027d

    Article  CAS  Google Scholar 

  109. Dudani JS, Gossett DR, Tse HT, Di Carlo D (2013) Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13(18):3728–3734. doi:10.1039/c3lc50649e

    Article  CAS  Google Scholar 

  110. McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21):4139–4158. doi:10.1039/c4lc00939h

    Article  CAS  Google Scholar 

  111. Qian C, Huang H, Chen L, Li X, Ge Z, Chen T, Yang Z, Sun L (2014) Dielectrophoresis for bioparticle manipulation. Int J Mol Sci 15(10):18281–18309. doi:10.3390/ijms151018281

    Article  CAS  Google Scholar 

  112. Lim B, Reddy V, Hu X, Kim K, Jadhav M, Abedini-Nassab R, Noh YW, Lim YT, Yellen BB, Kim C (2014) Magnetophoretic circuits for digital control of single particles and cells. Nat Commun 5:3846. doi:10.1038/ncomms4846

    CAS  Google Scholar 

  113. Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang TJ (2016) Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 7:11085. doi:10.1038/ncomms11085

    Article  CAS  Google Scholar 

  114. Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5(24):671–690. doi:10.1098/rsif.2008.0052

    Article  CAS  Google Scholar 

  115. Warkiani ME, Khoo BL, Wu L, Tay AK, Bhagat AA, Han J, Lim CT (2016) Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat Protoc 11(1):134–148. doi:10.1038/nprot.2016.003

    Article  CAS  Google Scholar 

  116. Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, Martel JM, Kojic N, Smith K, Chen PI, Yang J, Hwang H, Morgan B, Trautwein J, Barber TA, Stott SL, Maheswaran S, Kapur R, Haber DA, Toner M (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9(3):694–710. doi:10.1038/nprot.2014.044

    Article  CAS  Google Scholar 

  117. Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A (2015) Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 6:8686. doi:10.1038/ncomms9686

    Article  CAS  Google Scholar 

  118. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454. doi:10.1146/annurev.bioeng.8.061505.095739

    Article  CAS  Google Scholar 

  119. Yasukawa T, Nagamine K, Horiguchi Y, Shiku H, Koide M, Itayama T, Shiraishi F, Matsue T (2008) Electrophoretic cell manipulation and electrochemical gene-function analysis based on a yeast two-hybrid system in a microfluidic device. Anal Chem 80(10):3722–3727. doi:10.1021/ac800143t

    Article  CAS  Google Scholar 

  120. Park K, Suk HJ, Akin D, Bashir R (2009) Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Lab Chip 9(15):2224–2229. doi:10.1039/b904328d

    Article  CAS  Google Scholar 

  121. Glawdel T, Ren CL (2009) Electro-osmotic flow control for living cell analysis in microfluidic PDMS chips. Mech Res Commun 36(1):75–81. doi:10.1016/j.mechrescom.2008.06.015

    Article  Google Scholar 

  122. Geng T, Lu C (2013) Microfluidic electroporation for cellular analysis and delivery. Lab Chip 13(19):3803–3821. doi:10.1039/c3lc50566a

    Article  CAS  Google Scholar 

  123. Wu W, Qu Y, Hu N, Zeng Y, Yang J, Xu H, Yin ZQ (2015) A cell electrofusion chip for somatic cells reprogramming. PLoS ONE 10(7):e0131966. doi:10.1371/journal.pone.0131966

    Article  CAS  Google Scholar 

  124. Pethig R (2010) Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2). doi:10.1063/1.3456626

  125. Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891. doi:10.1038/nprot.2013.046

    Article  CAS  Google Scholar 

  126. Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320. doi:10.1146/annurev-bioeng-071813-104622

    Article  CAS  Google Scholar 

  127. Movahed S, Li D (2010) Microfluidics cell electroporation. Microfluid Nanofluid 10(4):703–734. doi:10.1007/s10404-010-0716-y

    Article  CAS  Google Scholar 

  128. Garcia PA, Ge Z, Moran JL, Buie CR (2016) Microfluidic screening of electric fields for electroporation. Sci Rep 6:21238. doi:10.1038/srep21238

    Article  CAS  Google Scholar 

  129. Qu B, Eu YJ, Jeong WJ, Kim DP (2012) Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal. Lab Chip 12(21):4483–4488. doi:10.1039/c2lc40360a

    Article  CAS  Google Scholar 

  130. Kang W, Giraldo-Vela JP, Nathamgari SS, McGuire T, McNaughton RL, Kessler JA, Espinosa HD (2014) Microfluidic device for stem cell differentiation and localized electroporation of postmitotic neurons. Lab Chip 14(23):4486–4495. doi:10.1039/c4lc00721b

    Article  CAS  Google Scholar 

  131. Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6(7):567–575. doi:10.1038/nrm1678

    Article  CAS  Google Scholar 

  132. Hu N, Yang J, Joo SW, Banerjee AN, Qian S (2013) Cell electrofusion in microfluidic devices: a review. Sens Actuators B: Chem 178:63–85. doi:10.1016/j.snb.2012.12.034

    Article  CAS  Google Scholar 

  133. Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Microfluidic control of cell pairing and fusion. Nat Methods 6(2):147–152. doi:10.1038/nmeth.1290

    Article  CAS  Google Scholar 

  134. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Subcellular positioning of small molecules. Nature 411(6841):1016. doi:10.1038/35082637

    Article  CAS  Google Scholar 

  135. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2003) Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem Biol 10(2):123–130. doi:10.1016/s1074-5521(03)00019-x

    Article  CAS  Google Scholar 

  136. Lee CY, Romanova EV, Sweedler JV (2013) Laminar stream of detergents for subcellular neurite damage in a microfluidic device: a simple tool for the study of neuroregeneration. J Neural Eng 10(3):036020. doi:10.1088/1741-2560/10/3/036020

    Article  Google Scholar 

  137. Au AK, Lai H, Utela BR, Folch A (2011) Microvalves and micropumps for BioMEMS. Micromachines 2(4):179–220. doi:10.3390/mi2020179

    Article  Google Scholar 

  138. Ogden S, Klintberg L, Thornell G, Hjort K, Bodén R (2013) Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluid Nanofluid 17(1):53–71. doi:10.1007/s10404-013-1289-3

    Article  CAS  Google Scholar 

  139. Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5(2):145–174. doi:10.1007/s10404-008-0266-8

    Article  CAS  Google Scholar 

  140. Shen J, Cai C, Yu Z, Pang Y, Zhou Y, Qian L, Wei W, Huang Y (2015) A microfluidic live cell assay to study anthrax toxin induced cell lethality assisted by conditioned medium. Sci Rep 5:8651. doi:10.1038/srep08651

    Article  CAS  Google Scholar 

  141. Taylor RJ, Falconnet D, Niemisto A, Ramsey SA, Prinz S, Shmulevich I, Galitski T, Hansen CL (2009) Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. Proc Natl Acad Sci U S A 106(10):3758–3763. doi:10.1073/pnas.0813416106

    Article  CAS  Google Scholar 

  142. Nguyen EH, Schwartz MP, Murphy WL (2011) Biomimetic approaches to control soluble concentration gradients in biomaterials. Macromol Biosci 11(4):483–492. doi:10.1002/mabi.201000448

    Article  CAS  Google Scholar 

  143. Dhumpa R, Roper MG (2012) Temporal gradients in microfluidic systems to probe cellular dynamics: a review. Anal Chim Acta 743:9–18. doi:10.1016/j.aca.2012.07.006

    Article  CAS  Google Scholar 

  144. Chung BG, Choo J (2010) Microfluidic gradient platforms for controlling cellular behavior. Electrophoresis 31(18):3014–3027. doi:10.1002/elps.201000137

    Article  CAS  Google Scholar 

  145. Toh AGG, Wang ZP, Yang C, Nguyen N-T (2013) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluid 16(1–2):1–18. doi:10.1007/s10404-013-1236-3

    Google Scholar 

  146. Lin F, Butcher EC (2006) T cell chemotaxis in a simple microfluidic device. Lab Chip 6(11):1462–1469. doi:10.1039/b607071j

    Article  CAS  Google Scholar 

  147. Englert DL, Manson MD, Jayaraman A (2010) Investigation of bacterial chemotaxis in flow-based microfluidic devices. Nat Protoc 5(5):864–872. doi:10.1038/nprot.2010.18

    Article  CAS  Google Scholar 

  148. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5(4):401–406. doi:10.1039/b417651k

    Article  CAS  Google Scholar 

  149. Dertinger SK, Jiang X, Li Z, Murthy VN, Whitesides GM (2002) Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci U S A 99(20):12542–12547. doi:10.1073/pnas.192457199

    Article  CAS  Google Scholar 

  150. Gao D, Li H, Wang N, Lin JM (2012) Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer. Anal Chem 84(21):9230–9237. doi:10.1021/ac301966c

    CAS  Google Scholar 

  151. Wu J, Wu X, Lin F (2013) Recent developments in microfluidics-based chemotaxis studies. Lab Chip 13(13):2484–2499. doi:10.1039/c3lc50415h

    Article  CAS  Google Scholar 

  152. Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol (Camb) 2(11–12):584–603. doi:10.1039/c0ib00055h

    Article  CAS  Google Scholar 

  153. Haessler U, Pisano M, Wu M, Swartz MA (2011) Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci U S A 108(14):5614–5619. doi:10.1073/pnas.1014920108

    Article  CAS  Google Scholar 

  154. Nguyen DH, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, Chen CS (2013) Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A 110(17):6712–6717. doi:10.1073/pnas.1221526110

    Article  CAS  Google Scholar 

  155. Chabaud M, Heuze ML, Bretou M, Vargas P, Maiuri P, Solanes P, Maurin M, Terriac E, Le Berre M, Lankar D, Piolot T, Adelstein RS, Zhang Y, Sixt M, Jacobelli J, Benichou O, Voituriez R, Piel M, Lennon-Dumenil AM (2015) Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nat Commun 6:7526. doi:10.1038/ncomms8526

    Article  CAS  Google Scholar 

  156. Boneschansker L, Yan J, Wong E, Briscoe DM, Irimia D (2014) Microfluidic platform for the quantitative analysis of leukocyte migration signatures. Nat Commun 5:4787. doi:10.1038/ncomms5787

    Article  CAS  Google Scholar 

  157. Vanapalli SA, Duits MH, Mugele F (2009) Microfluidics as a functional tool for cell mechanics. Biomicrofluidics 3(1):12006. doi:10.1063/1.3067820

    Article  CAS  Google Scholar 

  158. Tee SY, Bausch AR, Janmey PA (2009) The mechanical cell. Curr Biol 19(17):R745–R748. doi:10.1016/j.cub.2009.06.034

    Article  CAS  Google Scholar 

  159. Polacheck WJ, Li R, Uzel SG, Kamm RD (2013) Microfluidic platforms for mechanobiology. Lab Chip 13(12):2252–2267. doi:10.1039/c3lc41393d

    Article  CAS  Google Scholar 

  160. Jain A, Graveline A, Waterhouse A, Vernet A, Flaumenhaft R, Ingber DE (2016) A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat Commun 7:10176. doi:10.1038/ncomms10176

    Article  CAS  Google Scholar 

  161. Sundd P, Gutierrez E, Koltsova EK, Kuwano Y, Fukuda S, Pospieszalska MK, Groisman A, Ley K (2012) ‘Slings’ enable neutrophil rolling at high shear. Nature 488(7411):399–403. doi:10.1038/nature11248

    Article  CAS  Google Scholar 

  162. Sundd P, Gutierrez E, Pospieszalska MK, Zhang H, Groisman A, Ley K (2010) Quantitative dynamic footprinting microscopy reveals mechanisms of neutrophil rolling. Nat Methods 7(10):821–824. doi:10.1038/nmeth.1508

    Article  CAS  Google Scholar 

  163. Miura S, Sato K, Kato-Negishi M, Teshima T, Takeuchi S (2015) Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun 6:8871. doi:10.1038/ncomms9871

    Article  Google Scholar 

  164. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15(12):802–812. doi:10.1038/nrm3896

    Article  CAS  Google Scholar 

  165. Hsieh HY, Camci-Unal G, Huang TW, Liao R, Chen TJ, Paul A, Tseng FG, Khademhosseini A (2014) Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab Chip 14(3):482–493. doi:10.1039/c3lc50884f

    Article  CAS  Google Scholar 

  166. Kollmannsperger A, Sharei A, Raulf A, Heilemann M, Langer R, Jensen KF, Wieneke R, Tampe R (2016) Live-cell protein labelling with nanometre precision by cell squeezing. Nat Commun 7:10372. doi:10.1038/ncomms10372

    Article  CAS  Google Scholar 

  167. Si F, Li B, Margolin W, Sun SX (2015) Bacterial growth and form under mechanical compression. Sci Rep 5:11367. doi:10.1038/srep11367

    Article  Google Scholar 

  168. Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47(4):1394–1400. doi:10.1002/hep.22193

    Article  CAS  Google Scholar 

  169. Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI (2009) Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng 102(2):632–643. doi:10.1002/bit.22074

    Article  CAS  Google Scholar 

  170. Garcia S, Sunyer R, Olivares A, Noailly J, Atencia J, Trepat X (2015) Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device. Lab Chip 15(12):2606–2614. doi:10.1039/c5lc00140d

    Article  CAS  Google Scholar 

  171. Polacheck WJ, Chen CS (2016) Measuring cell-generated forces: a guide to the available tools. Nat Methods 13(5):415–423. doi:10.1038/nmeth.3834

    Article  CAS  Google Scholar 

  172. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100(4):1484–1489. doi:10.1073/pnas.0235407100

    Article  CAS  Google Scholar 

  173. du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Silberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci U S A 102(7):2390–2395. doi:10.1073/pnas.0408482102

    Article  CAS  Google Scholar 

  174. Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, Chen CS (2010) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7(9):733–736. doi:10.1038/nmeth.1487

    Article  CAS  Google Scholar 

  175. Ghassemi S, Meacci G, Liu S, Gondarenko AA, Mathur A, Roca-Cusachs P, Sheetz MP, Hone J (2012) Cells test substrate rigidity by local contractions on submicrometer pillars. Proc Natl Acad Sci U S A 109(14):5328–5333. doi:10.1073/pnas.1119886109

    Article  CAS  Google Scholar 

  176. Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M, Ribrault C, Hersen P, Voituriez R, Ladoux B (2012) Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci U S A 109(18):6933–6938. doi:10.1073/pnas.1117810109

    Article  CAS  Google Scholar 

  177. Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201. doi:10.1146/annurev-bioeng-070909-105238

    Article  CAS  Google Scholar 

  178. Chen Y, Li P, Huang PH, Xie Y, Mai JD, Wang L, Nguyen NT, Huang TJ (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14(4):626–645. doi:10.1039/c3lc90136j

    Article  CAS  Google Scholar 

  179. Autebert J, Coudert B, Bidard FC, Pierga JY, Descroix S, Malaquin L, Viovy JL (2012) Microfluidic: an innovative tool for efficient cell sorting. Methods 57(3):297–307. doi:10.1016/j.ymeth.2012.07.002

    Article  CAS  Google Scholar 

  180. Gao Y, Li W, Pappas D (2013) Recent advances in microfluidic cell separations. Analyst 138(17):4714–4721. doi:10.1039/c3an00315a

    Article  CAS  Google Scholar 

  181. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HT, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267. doi:10.1007/s00216-010-3721-9

    Article  CAS  Google Scholar 

  182. Plouffe BD, Murthy SK (2014) Perspective on microfluidic cell separation: a solved problem? Anal Chem 86(23):11481–11488. doi:10.1021/ac5013283

    Article  CAS  Google Scholar 

  183. Bhagat AA, Bow H, Hou HW, Tan SJ, Han J, Lim CT (2010) Microfluidics for cell separation. Med Biol Eng Comput 48(10):999–1014. doi:10.1007/s11517-010-0611-4

    Article  Google Scholar 

  184. Warkiani ME, Wu L, Tay AK, Han J (2015) Large-volume microfluidic cell sorting for biomedical applications. Annu Rev Biomed Eng 17:1–34. doi:10.1146/annurev-bioeng-071114-040818

    Article  CAS  Google Scholar 

  185. Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, Floyd FP Jr, Gilman AJ, Lord JB, Winokur D, Springer S, Irimia D, Nagrath S, Sequist LV, Lee RJ, Isselbacher KJ, Maheswaran S, Haber DA, Toner M (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 107(43):18392–18397. doi:10.1073/pnas.1012539107

    Article  CAS  Google Scholar 

  186. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584. doi:10.1126/science.1228522

    Article  CAS  Google Scholar 

  187. Chen Q, Wu J, Zhang Y, Lin Z, Lin JM (2012) Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip 12(24):5180–5185. doi:10.1039/c2lc40858a

    Article  CAS  Google Scholar 

  188. Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA (2002) The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin Chem 48(10):1819–1827

    CAS  Google Scholar 

  189. Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217. doi:10.1039/b915999c

    Article  CAS  Google Scholar 

  190. Yao B, Luo GA, Feng X, Wang W, Chen LX, Wang YM (2004) A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4(6):603–607. doi:10.1039/b408422e

    Article  CAS  Google Scholar 

  191. Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858. doi:10.1039/b902504a

    Article  CAS  Google Scholar 

  192. Sun Y, Lim CS, Liu AQ, Ayi TC, Yap PH (2007) Design, simulation and experiment of electroosmotic microfluidic chip for cell sorting. Sens Actuators A: Phys 133(2):340–348. doi:10.1016/j.sna.2006.06.047

    Article  CAS  Google Scholar 

  193. Austin Suthanthiraraj PP, Piyasena ME, Woods TA, Naivar MA, Lomicronpez GP, Graves SW (2012) One-dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods 57(3):259–271. doi:10.1016/j.ymeth.2012.02.013

    Article  CAS  Google Scholar 

  194. Johansson L, Nikolajeff F, Johansson S, Thorslund S (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81(13):5188–5196. doi:10.1021/ac802681r

    Article  CAS  Google Scholar 

  195. Wu TH, Chen Y, Park SY, Hong J, Teslaa T, Zhong JF, Di Carlo D, Teitell MA, Chiou PY (2012) Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter. Lab Chip 12(7):1378–1383. doi:10.1039/c2lc21084c

    Article  CAS  Google Scholar 

  196. Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic-microfluidic blood cleansing device. Lab Chip 9(9):1171–1177. doi:10.1039/b816986a

    Article  CAS  Google Scholar 

  197. Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang X (2011) Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11(20):3449–3457. doi:10.1039/c1lc20270g

    Article  CAS  Google Scholar 

  198. Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM, Westervelt RM, Ingber DE (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8(4):299–308. doi:10.1007/s10544-006-0033-0

    Article  CAS  Google Scholar 

  199. Kim S, Han SI, Park MJ, Jeon CW, Joo YD, Choi IH, Han KH (2013) Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads. Anal Chem 85(5):2779–2786. doi:10.1021/ac303284u

    Article  CAS  Google Scholar 

  200. Brown RB, Audet J (2008) Current techniques for single-cell lysis. J R Soc Interface 5(Suppl 2):S131–S138. doi:10.1098/rsif.2008.0009.focus

    Article  CAS  Google Scholar 

  201. Nan L, Jiang Z, Wei X (2014) Emerging microfluidic devices for cell lysis: a review. Lab Chip 14(6):1060–1073. doi:10.1039/c3lc51133b

    Article  CAS  Google Scholar 

  202. Hosic S, Murthy SK, Koppes AN (2016) Microfluidic sample preparation for single cell analysis. Anal Chem 88(1):354–380. doi:10.1021/acs.analchem.5b04077

    Article  CAS  Google Scholar 

  203. Yun SS, Yoon SY, Song MK, Im SH, Kim S, Lee JH, Yang S (2010) Handheld mechanical cell lysis chip with ultra-sharp silicon nano-blade arrays for rapid intracellular protein extraction. Lab Chip 10(11):1442–1446. doi:10.1039/b925244d

    Article  CAS  Google Scholar 

  204. Kim J, Hee Jang S, Jia G, Zoval JV, Da Silva NA, Madou MJ (2004) Cell lysis on a microfluidic CD (compact disc). Lab Chip 4(5):516–522. doi:10.1039/b401106f

    Article  CAS  Google Scholar 

  205. Siegrist J, Gorkin R, Bastien M, Stewart G, Peytavi R, Kido H, Bergeron M, Madou M (2010) Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab Chip 10(3):363–371. doi:10.1039/b913219h

    Article  CAS  Google Scholar 

  206. Mellors JS, Jorabchi K, Smith LM, Ramsey JM (2010) Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal Chem 82(3):967–973. doi:10.1021/ac902218y

    Article  CAS  Google Scholar 

  207. Jokilaakso N, Salm E, Chen A, Millet L, Guevara CD, Dorvel B, Reddy B Jr, Karlstrom AE, Chen Y, Ji H, Chen Y, Sooryakumar R, Bashir R (2013) Ultra-localized single cell electroporation using silicon nanowires. Lab Chip 13(3):336–339. doi:10.1039/c2lc40837f

    Article  CAS  Google Scholar 

  208. Lee C-Y, Lee G-B, Lin J-L, Huang F-C, Liao C-S (2005) Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification. J Micromech Microeng 15(6):1215–1223. doi:10.1088/0960-1317/15/6/011

    Article  CAS  Google Scholar 

  209. Sarkar A, Kolitz S, Lauffenburger DA, Han J (2014) Microfluidic probe for single-cell analysis in adherent tissue culture. Nat Commun 5:3421. doi:10.1038/ncomms4421

    Article  CAS  Google Scholar 

  210. Yang W, Woolley AT (2010) Integrated multi-process microfluidic systems for automating analysis. JALA Charlottesv Va 15(3):198–209. doi:10.1016/j.jala.2010.01.008

    CAS  Google Scholar 

  211. Cui F, Rhee M, Singh A, Tripathi A (2015) Microfluidic sample preparation for medical diagnostics. Annu Rev Biomed Eng 17:267–286. doi:10.1146/annurev-bioeng-071114-040538

    Article  CAS  Google Scholar 

  212. Wu D, Qin J, Lin B (2008) Electrophoretic separations on microfluidic chips. J Chromatogr A 1184(1–2):542–559. doi:10.1016/j.chroma.2007.11.119

    Article  CAS  Google Scholar 

  213. Cong H, Xu X, Yu B, Yuan H, Peng Q, Tian C (2015) Recent progress in preparation and application of microfluidic chip electrophoresis. J Micromech Microeng 25(5):053001. doi:10.1088/0960-1317/25/5/053001

    Article  CAS  Google Scholar 

  214. Karlinsey JM (2012) Sample introduction techniques for microchip electrophoresis: a review. Anal Chim Acta 725:1–13. doi:10.1016/j.aca.2012.02.052

    Article  CAS  Google Scholar 

  215. Liu P, Yeung SH, Crenshaw KA, Crouse CA, Scherer JR, Mathies RA (2008) Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer. Forensic Sci Int Genet 2(4):301–309. doi:10.1016/j.fsigen.2008.03.009

    Article  Google Scholar 

  216. Lin X, Chen Q, Liu W, Yi L, Li H, Wang Z, Lin JM (2015) Assay of multiplex proteins from cell metabolism based on tunable aptamer and microchip electrophoresis. Biosens Bioelectron 63:105–111. doi:10.1016/j.bios.2014.07.013

    Article  CAS  Google Scholar 

  217. Smejkal P, Bottenus D, Breadmore MC, Guijt RM, Ivory CF, Foret F, Macka M (2013) Microfluidic isotachophoresis: a review. Electrophoresis 34(11):1493–1509. doi:10.1002/elps.201300021

    Article  CAS  Google Scholar 

  218. Schoch RB, Ronaghi M, Santiago JG (2009) Rapid and selective extraction, isolation, preconcentration, and quantitation of small RNAs from cell lysate using on-chip isotachophoresis. Lab Chip 9(15):2145–2152. doi:10.1039/b903542g

    Article  CAS  Google Scholar 

  219. Tetala KK, Vijayalakshmi MA (2016) A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Anal Chim Acta 906:7–21. doi:10.1016/j.aca.2015.11.037

    Article  CAS  Google Scholar 

  220. Wu R, Hu L, Wang F, Ye M, Zou H (2008) Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J Chromatogr A 1184(1–2):369–392. doi:10.1016/j.chroma.2007.09.022

    Article  CAS  Google Scholar 

  221. Lin SL, Lin TY, Fuh MR (2014) Microfluidic chip-based liquid chromatography coupled to mass spectrometry for determination of small molecules in bioanalytical applications: an update. Electrophoresis 35(9):1275–1284. doi:10.1002/elps.201300415

    Article  CAS  Google Scholar 

  222. Chen ZW, Fuchs K, Sieghart W, Townsend RR, Evers AS (2012) Deep amino acid sequencing of native brain GABAA receptors using high-resolution mass spectrometry. Mol Cell Proteomics 11(1):M111 011445

    Google Scholar 

  223. Hwang KY, Kwon SH, Jung SO, Namkoong K, Jung WJ, Kim JH, Suh KY, Huh N (2012) Solid phase DNA extraction with a flexible bead-packed microfluidic device to detect methicillin-resistant Staphylococcus aureus in nasal swabs. Anal Chem 84(18):7912–7918. doi:10.1021/ac3016533

    Article  CAS  Google Scholar 

  224. Kumar S, Sahore V, Rogers CI, Woolley AT (2016) Development of an integrated microfluidic solid-phase extraction and electrophoresis device. Analyst 141(5):1660–1668. doi:10.1039/c5an02352a

    Article  CAS  Google Scholar 

  225. Ramsey JD, Collins GE (2005) Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Anal Chem 77(20):6664–6670. doi:10.1021/ac0507789

    Article  CAS  Google Scholar 

  226. Mao S, Zhang J, Li H, Lin JM (2013) Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication. Anal Chem 85(2):868–876. doi:10.1021/ac303164b

    Article  CAS  Google Scholar 

  227. Zhang J, Wu J, Li H, Chen Q, Lin JM (2015) An in vitro liver model on microfluidic device for analysis of capecitabine metabolite using mass spectrometer as detector. Biosens Bioelectron 68:322–328. doi:10.1016/j.bios.2015.01.013

    Article  CAS  Google Scholar 

  228. Gao D, Liu H, Lin JM, Wang Y, Jiang Y (2013) Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13(5):978–985. doi:10.1039/c2lc41215b

    Article  CAS  Google Scholar 

  229. Hagan KA, Meier WL, Ferrance JP, Landers JP (2009) Chitosan-coated silica as a solid phase for RNA purification in a microfluidic device. Anal Chem 81(13):5249–5256. doi:10.1021/ac900820z

    Article  CAS  Google Scholar 

  230. Tia S, Herr AE (2009) On-chip technologies for multidimensional separations. Lab Chip 9(17):2524–2536. doi:10.1039/b900683b

    Article  CAS  Google Scholar 

  231. Emrich CA, Medintz IL, Chu WK, Mathies RA (2007) Microfabricated two-dimensional electrophoresis device for differential protein expression profiling. Anal Chem 79(19):7360–7366. doi:10.1021/ac0711485

    Article  CAS  Google Scholar 

  232. Choi JR, Song H, Sung JH, Kim D, Kim K (2016) Microfluidic assay-based optical measurement techniques for cell analysis: a review of recent progress. Biosens Bioelectron 77:227–236. doi:10.1016/j.bios.2015.07.068

    Article  CAS  Google Scholar 

  233. Chrimes AF, Khoshmanesh K, Stoddart PR, Mitchell A, Kalantar-Zadeh K (2013) Microfluidics and Raman microscopy: current applications and future challenges. Chem Soc Rev 42(13):5880–5906. doi:10.1039/c3cs35515b

    Article  CAS  Google Scholar 

  234. Perro A, Lebourdon G, Henry S, Lecomte S, Servant L, Marre S (2016) Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes. React Chem Eng. doi:10.1039/c6re00127k

    Google Scholar 

  235. Kuswandi B, Nuriman, Huskens J, Verboom W (2007) Optical sensing systems for microfluidic devices: a review. Anal Chim Acta 601(2):141–155. doi:10.1016/j.aca.2007.08.046

    Article  CAS  Google Scholar 

  236. Rackus DG, Shamsi MH, Wheeler AR (2015) Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev 44(15):5320–5340. doi:10.1039/c4cs00369a

    Article  CAS  Google Scholar 

  237. Kiilerich-Pedersen K, Rozlosnik N (2012) Cell-Based biosensors: electrical sensing in microfluidic devices. Diagnostics (Basel) 2(4):83–96. doi:10.3390/diagnostics2040083

    Article  Google Scholar 

  238. D’hahan NP (2011) Live cell analysis: when electric detection interfaces microfluidics. J Biochips Tissue Chips 01(01). doi:10.4172/2153-0777.s1-001

  239. Rossier J, Reymond F, Michel PE (2002) Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 23(6):858–867. doi:10.1002/1522-2683(200203)23:6<858:AID-ELPS858>3.0.CO;2-3

    Article  CAS  Google Scholar 

  240. Wang X, Yi L, Mukhitov N, Schrell AM, Dhumpa R, Roper MG (2015) Microfluidics-to-mass spectrometry: a review of coupling methods and applications. J Chromatogr A 1382:98–116. doi:10.1016/j.chroma.2014.10.039

    Article  CAS  Google Scholar 

  241. Gao D, Liu H, Jiang Y, Lin JM (2013) Recent advances in microfluidics combined with mass spectrometry: technologies and applications. Lab Chip 13(17):3309–3322. doi:10.1039/c3lc50449b

    Article  CAS  Google Scholar 

  242. Feng X, Liu BF, Li J, Liu X (2015) Advances in coupling microfluidic chips to mass spectrometry. Mass Spectrom Rev 34(5):535–557. doi:10.1002/mas.21417

    Article  CAS  Google Scholar 

  243. Mao X, Huang TJ (2012) Microfluidic diagnostics for the developing world. Lab Chip 12(8):1412–1416. doi:10.1039/c2lc90022j

    Article  CAS  Google Scholar 

  244. Chen J, Li J, Sun Y (2012) Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12(10):1753–1767. doi:10.1039/c2lc21273k

    Article  CAS  Google Scholar 

  245. Giobbe GG, Michielin F, Luni C, Giulitti S, Martewicz S, Dupont S, Floreani A, Elvassore N (2015) Functional differentiation of human pluripotent stem cells on a chip. Nat Methods 12(7):637–640. doi:10.1038/nmeth.3411

    Article  CAS  Google Scholar 

  246. Lewis DM, Gerecht S (2016) Microfluidics and biomaterials to study angiogenesis. Curr Opin Chem Eng 11:114–122. doi:10.1016/j.coche.2016.02.005

    Article  Google Scholar 

  247. Huang Y, Agrawal B, Sun D, Kuo JS, Williams JC (2011) Microfluidics-based devices: new tools for studying cancer and cancer stem cell migration. Biomicrofluidics 5(1):13412. doi:10.1063/1.3555195

    Article  CAS  Google Scholar 

  248. Chung S, Sudo R, Vickerman V, Zervantonakis IK, Kamm RD (2010) Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Ann Biomed Eng 38(3):1164–1177. doi:10.1007/s10439-010-9899-3

    Article  Google Scholar 

  249. Kim C, Kasuya J, Jeon J, Chung S, Kamm RD (2015) A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 15(1):301–310. doi:10.1039/c4lc00866a

    Article  Google Scholar 

  250. Haandbaek N, Burgel SC, Heer F, Hierlemann A (2014) Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer. Lab Chip 14(2):369–377. doi:10.1039/c3lc50866h

    Article  CAS  Google Scholar 

  251. Kim J, Johnson M, Hill P, Gale BK (2009) Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol (Camb) 1(10):574–586. doi:10.1039/b905844c

    Article  CAS  Google Scholar 

  252. Chang CM, Chang WH, Wang CH, Wang JH, Mai JD, Lee GB (2013) Nucleic acid amplification using microfluidic systems. Lab Chip 13(7):1225–1242. doi:10.1039/c3lc41097h

    Article  CAS  Google Scholar 

  253. Wu J, Kodzius R, Cao W, Wen W (2013) Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchim Acta 181(13–14):1611–1631. doi:10.1007/s00604-013-1140-2

    Google Scholar 

  254. Mauk MG, Liu C, Song J, Bau HH (2015) Integrated microfluidic nucleic acid isolation, isothermal amplification, and amplicon quantification. Microarrays (Basel) 4(4):474–489. doi:10.3390/microarrays4040474

    Article  Google Scholar 

  255. Zhang R, Li X, Ramaswami G, Smith KS, Turecki G, Montgomery SB, Li JB (2014) Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing. Nat Methods 11(1):51–54. doi:10.1038/nmeth.2736

    Article  CAS  Google Scholar 

  256. Fang X, Chen H, Xu L, Jiang X, Wu W, Kong J (2012) A portable and integrated nucleic acid amplification microfluidic chip for identifying bacteria. Lab Chip 12(8):1495–1499. doi:10.1039/c2lc40055c

    Article  CAS  Google Scholar 

  257. Liu P, Mathies RA (2009) Integrated microfluidic systems for high-performance genetic analysis. Trends Biotechnol 27(10):572–581. doi:10.1016/j.tibtech.2009.07.002

    Article  CAS  Google Scholar 

  258. Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M (2012) Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 12(18):3249–3266. doi:10.1039/c2lc40630f

    Article  CAS  Google Scholar 

  259. Horsman KM, Bienvenue JM, Blasier KR, Landers JP (2007) Forensic DNA analysis on microfluidic devices: a review. J Forensic Sci 52(4):784–799. doi:10.1111/j.1556-4029.2007.00468.x

    Article  CAS  Google Scholar 

  260. Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, Kyriazopoulou-Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM, Mudivarti PA, Wyatt PW, Bharadwaj R, Makarewicz AJ, Li Y, Belgrader P, Price AD, Lowe AJ, Marks P, Vurens GM, Hardenbol P, Montesclaros L, Luo M, Greenfield L, Wong A, Birch DE, Short SW, Bjornson KP, Patel P, Hopmans ES, Wood C, Kaur S, Lockwood GK, Stafford D, Delaney JP, Wu I, Ordonez HS, Grimes SM, Greer S, Lee JY, Belhocine K, Giorda KM, Heaton WH, McDermott GP, Bent ZW, Meschi F, Kondov NO, Wilson R, Bernate JA, Gauby S, Kindwall A, Bermejo C, Fehr AN, Chan A, Saxonov S, Ness KD, Hindson BJ, Ji HP (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34(3):303–311. doi:10.1038/nbt.3432

    Article  CAS  Google Scholar 

  261. Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, Aceto N, Bersani F, Brannigan BW, Xega K, Ciciliano JC, Zhu H, MacKenzie OC, Trautwein J, Arora KS, Shahid M, Ellis HL, Qu N, Bardeesy N, Rivera MN, Deshpande V, Ferrone CR, Kapur R, Ramaswamy S, Shioda T, Toner M, Maheswaran S, Haber DA (2014) Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 8(6):1905–1918. doi:10.1016/j.celrep.2014.08.029

    Article  CAS  Google Scholar 

  262. Kimmerling RJ, Lee Szeto G, Li JW, Genshaft AS, Kazer SW, Payer KR, de Riba Borrajo J, Blainey PC, Irvine DJ, Shalek AK, Manalis SR (2016) A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat Commun 7:10220. doi:10.1038/ncomms10220

    Article  CAS  Google Scholar 

  263. Sanchez-Freire V, Ebert AD, Kalisky T, Quake SR, Wu JC (2012) Microfluidic single-cell real-time PCR for comparative analysis of gene expression patterns. Nat Protoc 7(5):829–838. doi:10.1038/nprot.2012.021

    Article  CAS  Google Scholar 

  264. Streets AM, Zhang X, Cao C, Pang Y, Wu X, Xiong L, Yang L, Fu Y, Zhao L, Tang F, Huang Y (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A 111(19):7048–7053. doi:10.1073/pnas.1402030111

    Article  CAS  Google Scholar 

  265. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef N, Schwartz S, Fowler B, Weaver S, Wang J, Wang X, Ding R, Raychowdhury R, Friedman N, Hacohen N, Park H, May AP, Regev A (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510(7505):363–369. doi:10.1038/nature13437

    CAS  Google Scholar 

  266. Cao Z, Chen C, He B, Tan K, Lu C (2015) A microfluidic device for epigenomic profiling using 100 cells. Nat Methods 12(10):959–962. doi:10.1038/nmeth.3488

    Article  CAS  Google Scholar 

  267. Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 10(9):628–638. doi:10.1038/nrg2625

    Article  CAS  Google Scholar 

  268. Toriello NM, Douglas ES, Thaitrong N, Hsiao SC, Francis MB, Bertozzi CR, Mathies RA (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci U S A 105(51):20173–20178. doi:10.1073/pnas.0806355106

    Article  CAS  Google Scholar 

  269. Busch W, Moore BT, Martsberger B, Mace DL, Twigg RW, Jung J, Pruteanu-Malinici I, Kennedy SJ, Fricke GK, Clark RL, Ohler U, Benfey PN (2012) A microfluidic device and computational platform for high-throughput live imaging of gene expression. Nat Methods 9(11):1101–1106. doi:10.1038/nmeth.2185

    Article  CAS  Google Scholar 

  270. Yu J, Zhou J, Sutherland A, Wei W, Shin YS, Xue M, Heath JR (2014) Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu Rev Anal Chem (Palo Alto Calif) 7:275–295. doi:10.1146/annurev-anchem-071213-020323

    Article  CAS  Google Scholar 

  271. Sun J, Masterman-Smith MD, Graham NA, Jiao J, Mottahedeh J, Laks DR, Ohashi M, DeJesus J, Kamei K, Lee KB, Wang H, Yu ZT, Lu YT, Hou S, Li K, Liu M, Zhang N, Wang S, Angenieux B, Panosyan E, Samuels ER, Park J, Williams D, Konkankit V, Nathanson D, van Dam RM, Phelps ME, Wu H, Liau LM, Mischel PS, Lazareff JA, Kornblum HI, Yong WH, Graeber TG, Tseng HR (2010) A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens. Cancer Res 70(15):6128–6138. doi:10.1158/0008-5472.CAN-10-0076

    Article  CAS  Google Scholar 

  272. Nguyen CQ, Ogunniyi AO, Karabiyik A, Love JC (2013) Single-cell analysis reveals isotype-specific autoreactive B cell repertoires in Sjogren’s syndrome. PLoS ONE 8(3):e58127. doi:10.1371/journal.pone.0058127

    Article  CAS  Google Scholar 

  273. Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129(7):1959–1967. doi:10.1021/ja065930i

    Article  CAS  Google Scholar 

  274. Xue M, Wei W, Su Y, Kim J, Shin YS, Mai WX, Nathanson DA, Heath JR (2015) Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J Am Chem Soc 137(12):4066–4069. doi:10.1021/jacs.5b00944

    Article  CAS  Google Scholar 

  275. Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B, Chodon T, Koya RC, Liu CC, Kwong GA, Radu CG, Ribas A, Heath JR (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17(6):738–743. doi:10.1038/nm.2375

    Article  CAS  Google Scholar 

  276. Poovathingal SK, Kravchenko-Balasha N, Shin YS, Levine RD, Heath JR (2016) Critical points in Tumorigenesis: a carcinogen-initiated phase transition analyzed via single-cell proteomics. Small 12(11):1425–1431. doi:10.1002/smll.201501178

    Article  CAS  Google Scholar 

  277. He M, Herr AE (2010) Automated microfluidic protein immunoblotting. Nat Protoc 5(11):1844–1856. doi:10.1038/nprot.2010.142

    Article  CAS  Google Scholar 

  278. Hughes AJ, Herr AE (2012) Microfluidic Western blotting. Proc Natl Acad Sci U S A 109(52):21450–21455. doi:10.1073/pnas.1207754110

    Article  CAS  Google Scholar 

  279. Hughes AJ, Spelke DP, Xu Z, Kang CC, Schaffer DV, Herr AE (2014) Single-cell western blotting. Nat Methods 11(7):749–755. doi:10.1038/nmeth.2992

    Article  CAS  Google Scholar 

  280. Kang CC, Yamauchi KA, Vlassakis J, Sinkala E, Duncombe TA, Herr AE (2016) Single cell-resolution western blotting. Nat Protoc 11(8):1508–1530. doi:10.1038/nprot.2016.089

    Article  Google Scholar 

  281. Lee JR, Bechstein DJ, Ooi CC, Patel A, Gaster RS, Ng E, Gonzalez LC, Wang SX (2016) Magneto-nanosensor platform for probing low-affinity protein-protein interactions and identification of a low-affinity PD-L1/PD-L2 interaction. Nat Commun 7:12220. doi:10.1038/ncomms12220

    Article  CAS  Google Scholar 

  282. Lee J, Soper SA, Murray KK (2009) Microfluidic chips for mass spectrometry-based proteomics. J Mass Spectrom 44(5):579–593. doi:10.1002/jms.1585

    Article  CAS  Google Scholar 

  283. Chao TC, Hansmeier N (2013) Microfluidic devices for high-throughput proteome analyses. Proteomics 13(3–4):467–479. doi:10.1002/pmic.201200411

    Article  CAS  Google Scholar 

  284. Vollmer M, Hörth P, Rozing G, Couté Y, Grimm R, Hochstrasser D, Sanchez J-C (2006) Multi-dimensional HPLC/MS of the nucleolar proteome using HPLC-chip/MS. J Sep Sci 29(4):499–509. doi:10.1002/jssc.200500334

    Article  CAS  Google Scholar 

  285. Lee J, Soper SA, Murray KK (2009) Microfluidics with MALDI analysis for proteomics—a review. Anal Chim Acta 649(2):180–190. doi:10.1016/j.aca.2009.07.037

    Article  CAS  Google Scholar 

  286. Lee J, Soper SA, Murray KK (2011) A solid-phase bioreactor with continuous sample deposition for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25(6):693–699. doi:10.1002/rcm.4921

    Article  CAS  Google Scholar 

  287. Rubakhin SS, Romanova EV, Nemes P, Sweedler JV (2011) Profiling metabolites and peptides in single cells. Nat Methods 8(4 Suppl):S20–S29. doi:10.1038/nmeth.1549

    Article  CAS  Google Scholar 

  288. Kraly JR, Holcomb RE, Guan Q, Henry CS (2009) Review: microfluidic applications in metabolomics and metabolic profiling. Anal Chim Acta 653(1):23–35. doi:10.1016/j.aca.2009.08.037

    Article  CAS  Google Scholar 

  289. Lin L, Lin JM (2015) Development of cell metabolite analysis on microfluidic platform. J Pharm Anal 5(6):337–347. doi:10.1016/j.jpha.2015.09.003

    Article  Google Scholar 

  290. He X, Chen Q, Zhang Y, Lin JM (2014) Recent advances in microchip-mass spectrometry for biological analysis. TrAC Trends Anal Chem 53:84–97. doi:10.1016/j.trac.2013.09.013

    Article  CAS  Google Scholar 

  291. Liu W, Wang N, Lin X, Ma Y, Lin JM (2014) Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell culture. Anal Chem 86(14):7128–7134. doi:10.1021/ac501678q

    Article  CAS  Google Scholar 

  292. Mao S, Gao D, Liu W, Wei H, Lin JM (2012) Imitation of drug metabolism in human liver and cytotoxicity assay using a microfluidic device coupled to mass spectrometric detection. Lab Chip 12(1):219–226. doi:10.1039/c1lc20678h

    Article  CAS  Google Scholar 

  293. Chen Q, Wu J, Zhang Y, Lin JM (2012) Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry. Anal Chem 84(3):1695–1701. doi:10.1021/ac300003k

    Article  CAS  Google Scholar 

  294. Zhuang Q, Wang S, Zhang J, He Z, Li H, Ma Y, Lin JM (2015) Nephrocyte-neurocyte interaction and cellular metabolic analysis on membrane-integrated microfluidic device. Sci China Chem 59(2):243–250. doi:10.1007/s11426-015-5453-3

    Article  CAS  Google Scholar 

  295. Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, Stephanopoulos G (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32(5):473–478. doi:10.1038/nbt.2857

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

He, Z., Lin, JM. (2018). Recent Development of Cell Analysis on Microfludics. In: Lin, JM. (eds) Cell Analysis on Microfluidics. Integrated Analytical Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-5394-8_2

Download citation

Publish with us

Policies and ethics