Microfluidic Cell Culture Systems for Drug Research

Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

The identification of new drugs and predicting drug responses to cancer patients are unprecedented challenges in pharmaceutical industry. Developing biologically relevant models of human tissues and organs is of vital importance for disease modeling and drug discovery. Microfluidic devices, with controllable chambers and channels in the micrometer range (10–1000 μm), are suitable for miniaturization analysis and they showed great promise as new and influential players in drug discovery. In this chapter, microfluidic technologies, which improve the efficiency of drug research at the microscale level, were summarized. To begin with, the attractive properties of lab-on-a-chip technology were described. Then, the development of three mainly microfluidic technologies were introduced and described in detail. Some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are subsequently reviewed and highlighted. Finally, the challenges and opportunities in regard to numerous aspects of microfluidic system were discussed. It is believed that its excellent properties of miniaturization, high-throughput analysis, and highly integrated function, endows lab-on-a-chip device with great potential academic and commercial value in discovery and development of drug.

Keywords

Drug research Microfluidics Cell culture Organs on a chip Pharmacokinetics system 

References

  1. 1.
    Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14(4):248–260. doi: 10.1038/nrd4539 CrossRefGoogle Scholar
  2. 2.
    Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214. doi: 10.1038/nrd3078 Google Scholar
  3. 3.
    Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 11(3):191–200. doi: 10.1038/nrd3681 CrossRefGoogle Scholar
  4. 4.
    Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, Khademhosseini A (2014) Organs-on-a-chip: a new tool for drug discovery. Expert Opin Drug Discov 9(4):335–352CrossRefGoogle Scholar
  5. 5.
    Editorial (2007) Five years on…and four challenges for the pharmaceutical industry. Nat Rev Drug Discov 6(1):3–3Google Scholar
  6. 6.
    Kang L, Chung BG, Langer R, Khademhosseini A (2008) Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov Today 13(1–2):1–13CrossRefGoogle Scholar
  7. 7.
    Pihl J, Karlsson M, Chiu DT (2005) Microfluidic technologies in drug discovery. Drug Discov Today 10(20):1377–1383CrossRefGoogle Scholar
  8. 8.
    Tsui JH, Lee W, Pun SH, Kim J, Kim DH (2013) Microfluidics-assisted in vitro drug screening and carrier production. Adv Drug Deliv Rev 65(11):1575–1588CrossRefGoogle Scholar
  9. 9.
    Duncombe TA, Tentori AM, Herr AE (2015) Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol 16(9):554–567CrossRefGoogle Scholar
  10. 10.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem 1(1–6):244–248CrossRefGoogle Scholar
  11. 11.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRefGoogle Scholar
  12. 12.
    Squires TM, Quake SR (2004) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026CrossRefGoogle Scholar
  13. 13.
    Mehling M, Tay S (2014) Microfluidic cell culture. Curr Opin Biotechnol 25(2):95–102CrossRefGoogle Scholar
  14. 14.
    Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754CrossRefGoogle Scholar
  15. 15.
    Ning R, Wang F, Lin L (2015) Biomaterial-based microfluidics for cell culture and analysis. TrAC Trends Anal Chem 80:255–265CrossRefGoogle Scholar
  16. 16.
    Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218CrossRefGoogle Scholar
  17. 17.
    Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189CrossRefGoogle Scholar
  18. 18.
    Kaji H, Yokoi T, Kawashima T, Nishizawa M (2010) Directing the flow of medium in controlled cocultures of HeLa cells and human umbilical vein endothelial cells with a microfluidic device. Lab Chip 10(10):2374–2379CrossRefGoogle Scholar
  19. 19.
    Lamb BM, Barrett DG, Westcott NP, Yousaf MN (2008) Microfluidic lithography of SAMs on gold to create dynamic surfaces for directed cell migration and contiguous cell cocultures. Langmuir 24(16):8885–8889CrossRefGoogle Scholar
  20. 20.
    Chen Z, Chen W, Yuan B, Xiao L, Liu D, Jin Y, Quan B, Wang JO, Ibrahim K, Wang Z (2010) In vitro model on glass surfaces for complex interactions between different types of cells. Langmuir 26(23):17790–17794CrossRefGoogle Scholar
  21. 21.
    Wei H, Li H, Mao S, Lin JM (2011) Cell signaling analysis by mass spectrometry under coculture conditions on an integrated microfluidic device. Anal Chem 83(24):9306–9313CrossRefGoogle Scholar
  22. 22.
    Xu T, Yue W, Li CW, Yao X, Cai G, Yang M (2010) Real-time monitoring of suspension cell-cell communication using an integrated microfluidics. Lab Chip 10(17):2271–2278CrossRefGoogle Scholar
  23. 23.
    Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc 8(5):870–891. doi: 10.1038/nprot.2013.046 CrossRefGoogle Scholar
  24. 24.
    Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 24(3):225–226Google Scholar
  25. 25.
    Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, Floyd FP Jr, Gilman AJ, Lord JB, Winokur D, Springer S, Irimia D, Nagrath S, Sequist LV, Lee RJ, Isselbacher KJ, Maheswaran S, Haber DA, Toner M (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 107(43):18392–18397. doi: 10.1073/pnas.1012539107 CrossRefGoogle Scholar
  26. 26.
    Wu J, Chen Q, Liu W, He Z, Lin JM (2016) Recent Advances in microfluidic 3D cellular scaffolds for drug assays. TrAC Trends Anal Chem 87(10):19–31Google Scholar
  27. 27.
    Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845CrossRefGoogle Scholar
  28. 28.
    Kim D, Lin YS, Haynes CL (2011) On-chip evaluation of shear stress effect on cytotoxicity of mesoporous silica nanoparticles. Anal Chem 83(22):8377–8382CrossRefGoogle Scholar
  29. 29.
    Park ES, Brown AC, Difeo MA, Barker TH, Lu H (2010) Continuously perfused, non-cross-contaminating microfluidic chamber array for studying cellular responses to orthogonal combinations of matrix and soluble signals. Lab Chip 10(5):571–580CrossRefGoogle Scholar
  30. 30.
    Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15(10):647–664CrossRefGoogle Scholar
  31. 31.
    Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) From the Cover: Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100(4):1484–1489CrossRefGoogle Scholar
  32. 32.
    Kunze A, Giugliano M, Valero A, Renaud P (2011) Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials 32(8):2088–2098CrossRefGoogle Scholar
  33. 33.
    Lii J, Hsu WJ, Parsa H, Das A, Rouse R, Sia SK (2008) Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal Chem 80(10):3640–3647CrossRefGoogle Scholar
  34. 34.
    Tumarkin E, Tzadu L, Csaszar E, Seo M, Zhang H, Lee A, Peerani R, Purpura K, Zandstra PW, Kumacheva E (2011) High-throughput combinatorial cell co-culture using microfluidics. Integr Biol (Camb) 3(6):653–662CrossRefGoogle Scholar
  35. 35.
    Liu J, Gao D, Li HF, Lin JM (2009) Controlled photopolymerization of hydrogel microstructures inside microchannels for bioassays. Lab Chip 9(9):1301–1305CrossRefGoogle Scholar
  36. 36.
    Wu J, Chen Q, Liu W, Zhang Y, Lin JM (2012) Cytotoxicity of quantum dots assay on a microfluidic 3D-culture device based on modeling diffusion process between blood vessels and tissues. Lab Chip 12(18):3474–3480CrossRefGoogle Scholar
  37. 37.
    Ong S, Zhang C, Toh Y, Sh Foo H, Tan C, Van-Noort D, Park S, Yu H (2008) A gel-free 3D microfluidic cell culture system. Biomaterials 29(22):3237–3244CrossRefGoogle Scholar
  38. 38.
    Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, Van ND, Hutmacher DW, Yu H (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7(3):302–309CrossRefGoogle Scholar
  39. 39.
    Choi JS, Piao Y, Seo TS (2014) Circumferential alignment of vascular smooth muscle cells in a circular microfluidic channel. Biomaterials 35(1):63–70CrossRefGoogle Scholar
  40. 40.
    Yuan B, Jin Y, Sun Y, Wang D, Sun J, Wang Z, Zhang W, Jiang X (2012) Artificial vessels: a strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues (Adv. Mater. 7/2012). Adv Mater 24(7):890–896CrossRefGoogle Scholar
  41. 41.
    Hsiao AY, Torisawa YS, Tung YC, Sud S, Taichman RS, Pienta KJ, Takayama S (2009) Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30(16):3020–3027CrossRefGoogle Scholar
  42. 42.
    Selimović Š, Dokmeci MR, Khademhosseini A (2013) Organs-on-a-chip for drug discovery. Curr Opin Pharmacol 13(5):829–833CrossRefGoogle Scholar
  43. 43.
    Lee JB, Sung JH (2013) Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening. Biotechnol J 8(11):1258–1266CrossRefGoogle Scholar
  44. 44.
    Caplin JD, Granados NG, James MR, Montazami R, Hashemi N (2015) Microfluidic organ-on-a-chip technology for advancement of drug development and toxicology. Adv Healthc Mater 4(10):1426–1450CrossRefGoogle Scholar
  45. 45.
    Zhang YS, Khademhosseini A (2015) Seeking the right context for evaluating nanomedicine: from tissue models in petri dishes to microfluidic organs-on-a-chip. Nanomedicine 10(5):685–688CrossRefGoogle Scholar
  46. 46.
    Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells L, Massé S, Kim J, Reis L (2016) Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater 15(6):669–678CrossRefGoogle Scholar
  47. 47.
    Kim S, Takayama S (2015) Organ-on-a-chip and the kidney. Kidney Res Clin Pract 34(3):165–169CrossRefGoogle Scholar
  48. 48.
    Luni C, Serena E, Elvassore N (2014) Human-on-chip for therapy development and fundamental science. Curr Opin Biotechnol 25(1):45–50CrossRefGoogle Scholar
  49. 49.
    Duinen VV, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126CrossRefGoogle Scholar
  50. 50.
    Wu MH, Huang SB, Lee GB (2010) Microfluidic cell culture systems for drug research. Lab Chip 10(10):939–956CrossRefGoogle Scholar
  51. 51.
    Elali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411CrossRefGoogle Scholar
  52. 52.
    Xu Z, Gao Y, Hao Y, Li E, Wang Y, Zhang J, Wang W, Gao Z, Wang Q (2013) Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34(16):4109–4117CrossRefGoogle Scholar
  53. 53.
    Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772CrossRefGoogle Scholar
  54. 54.
    Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S (2012) Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov 11(12):909–922CrossRefGoogle Scholar
  55. 55.
    Ghaemmaghami AM, Hancock MJ, Harrington H, Kaji H, Khademhosseini A (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17(3–4):173–181CrossRefGoogle Scholar
  56. 56.
    Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164CrossRefGoogle Scholar
  57. 57.
    Inamdar NK, Borenstein JT (2011) Microfluidic cell culture models for tissue engineering. Curr Opin Biotechnol 22(5):681–689CrossRefGoogle Scholar
  58. 58.
    Yeon JH, Ryu HR, Chung M, Hu QP, Jeon NL (2012) In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices. Lab Chip 12(16):2815–2822CrossRefGoogle Scholar
  59. 59.
    Forouzan O, Burns JM, Robichaux JL, Murfee WL, Shevkoplyas SS (2011) Passive recruitment of circulating leukocytes into capillary sprouts from existing capillaries in a microfluidic system. Lab Chip 11(11):1924–1932CrossRefGoogle Scholar
  60. 60.
    Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA, Thorneloe KS, Mcalexander MA, Ingber DE (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):3068–3072CrossRefGoogle Scholar
  61. 61.
    Kang YB, Rawat S, Cirillo J, Bouchard M, Noh HM (2013) Layered long-term co-culture of hepatocytes and endothelial cells on a transwell membrane: toward engineering the liver sinusoid. Biofabrication 5(4):380–387CrossRefGoogle Scholar
  62. 62.
    Artursson P, Palm K, Luthman K (1996) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 22(1–2):67–84CrossRefGoogle Scholar
  63. 63.
    Artursson P (1990) Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorbtive (Caco-2) cells. J Pharm Sci 79(6):476–482CrossRefGoogle Scholar
  64. 64.
    Hilgers AR, Conradi RA, Burton PS (1990) Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res 7(9):902–910CrossRefGoogle Scholar
  65. 65.
    Boulenc X, Bourrie M, Fabre I, Roque C, Joyeux H, Berger Y, Fabre G (1992) Regulation of cytochrome P450IA1 gene expression in a human intestinal cell line, Caco-2. J Pharmacol Exp Ther 263(3):1471–1478Google Scholar
  66. 66.
    Oulianova N, Cheng D, Huebert N, Chen Y (2007) Human oral drugs absorption is correlated to their in vitro uptake by brush border membrane vesicles. Int J Pharm 336(1):115–121CrossRefGoogle Scholar
  67. 67.
    Volpe DA (2008) Variability in Caco-2 and MDCK cell-based intestinal permeability assays. J Pharm Sci 97(2):712–725CrossRefGoogle Scholar
  68. 68.
    Shah P, Jogani V, Bagchi T, Misra A (2006) Role of Caco-2 cell monolayers in prediction of intestinal drug absorption. Biotechnol Prog 22(1):186–198CrossRefGoogle Scholar
  69. 69.
    Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12(12):2165–2174. doi: 10.1039/c2lc40074j CrossRefGoogle Scholar
  70. 70.
    Gao D, Liu H, Lin JM, Wang Y, Jiang Y (2013) Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 13(5):978–985CrossRefGoogle Scholar
  71. 71.
    Huh D, Matthews BD, Mammoto A, Montoyazavala M, Hong YH, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668CrossRefGoogle Scholar
  72. 72.
    Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee HH, Alves SE, Salmon M, Ferrante TC, Weaver JC (2015) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13(2):151–157CrossRefGoogle Scholar
  73. 73.
    Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-Teschl C, López JA (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 109(109):9342–9347CrossRefGoogle Scholar
  74. 74.
    Chung Sudo S, Mack R, Peter J (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2):269–275CrossRefGoogle Scholar
  75. 75.
    Mu X, Zheng W, Xiao L, Zhang W, Jiang X (2013) Engineering a 3D vascular network in hydrogel for mimicking a nephron. Lab Chip 13(8):1612–1618CrossRefGoogle Scholar
  76. 76.
    Fan Y, Nguyen DT, Akay Y, Xu F, Akay M (2016) Engineering a brain cancer chip for high-throughput drug screening. Sci Rep 6:25062. doi: 10.1038/srep25062 CrossRefGoogle Scholar
  77. 77.
    Wagner I, Materne EM, Brincker S, Sussbier U, Fradrich C, Busek M, Sonntag F, Sakharov DA, Trushkin EV, Tonevitsky AG, Lauster R, Marx U (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18):3538–3547. doi: 10.1039/c3lc50234a CrossRefGoogle Scholar
  78. 78.
    Imura Y, Sato K, Yoshimura E (2010) Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal Chem 82(24):9983–9988CrossRefGoogle Scholar
  79. 79.
    Jie M, Li HF, Lin L, Zhang J, Lin JM (2016) Integrated microfluidic system for cell co-culture and simulation of drug metabolism. RSC Adv 6(59):54564–54572CrossRefGoogle Scholar
  80. 80.
    Kim SH, Weitz DA (2011) One-Step emulsification of multiple concentric shells with capillary microfluidic devices. Angew Chem Int Ed Engl 50(37):8731–8734CrossRefGoogle Scholar
  81. 81.
    Chen Q, Wu J, Zhang Y, Lin JM (2012) Qualitative and quantitative analysis of tumor cell metabolism via stable isotope labeling assisted microfluidic chip electrospray ionization mass spectrometry. Anal Chem 84(3):1695–1701CrossRefGoogle Scholar
  82. 82.
    Kim JS, Knapp DR (2001) Miniaturized multichannel electrospray ionization emitters on poly(dimethylsiloxane) microfluidic devices. Electrophoresis 22(18):3993–3999CrossRefGoogle Scholar
  83. 83.
    Xue Q, Foret F, Dunayevskiy YM, Zavracky PM, Mcgruer NE, Karger BL (1997) Multichannel microchip electrospray mass spectrometry. Anal Chem 69(69):426–430CrossRefGoogle Scholar
  84. 84.
    And RSR, Ramsey JM (1997) Generating electrospray from microchip devices using electroosmotic pumping. Anal Chem 69(13):1174–1178Google Scholar
  85. 85.
    Bings NH, Wang C, Skinner CD, Colyer CL, Thibault P, Harrison DJ (1999) Microfluidic devices connected to fused-silica capillaries with minimal dead volume. Anal Chem 71(15):3292–3296CrossRefGoogle Scholar
  86. 86.
    Gao D, Wei H, Guo GS, Lin JM (2010) Microfluidic cell culture and metabolism detection with electrospray ionization quadrupole time-of-flight mass spectrometer. Anal Chem 82(13):5679–5685CrossRefGoogle Scholar
  87. 87.
    Benetton S, Kameoka J, Tan A, Wachs T, Craighead AH, † JDH (2003) Chip-based P450 drug metabolism coupled to electrospray ionization-mass spectrometry detection. Anal Chem 75(23):6430–6436Google Scholar
  88. 88.
    Liu W, Lin JM (2016) Online monitoring of lactate efflux by multi-channel microfluidic chip-mass spectrometry for rapid drug evaluation. ACS Sen 1(4):344–347CrossRefGoogle Scholar
  89. 89.
    Wei H, Li H, Lin JM (2009) Analysis of herbicides on a single C(30) bead via a microfluidic device combined with electrospray ionization quadrupole time-of-flight mass spectrometer. J Chromatogr A 1216(52):9134–9142CrossRefGoogle Scholar
  90. 90.
    Wang H, Liu J, Cooks RG, Ouyang Z (2010) Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew Chem Int Ed Engl 49(5):877–880. doi: 10.1002/anie.200906314 CrossRefGoogle Scholar
  91. 91.
    Li A, Wang H, Ouyang Z, Cooks RG (2011) Paper spray ionization of polar analytes using non-polar solvents. Chem Commun 47(10):2811–2813CrossRefGoogle Scholar
  92. 92.
    Yin H, Killeen K, Brennen R, Sobek D, Werlich M, Van de GT (2005) Microfluidic Chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. Anal Chem 77(2):527–533Google Scholar
  93. 93.
    Liu W, Wang N, Lin X, Ma Y, Lin JM (2014) Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell culture. Anal Chem 86(14):7128–7134CrossRefGoogle Scholar
  94. 94.
    Fortier M, Bonneil E, §, Goodley AP, Thibault P, ‡, § (2005) Integrated microfluidic device for mass spectrometry-based proteomics and its application to biomarker discovery programs. Anal Chem 77(6):1631–1640Google Scholar
  95. 95.
    Dr RTK, Dr JSP, Dr IM, Dr KT, Dr RDS (2009) Dilution-free analysis from picoliter droplets by nano-electrospray ionization mass spectrometry. Angew Chem Int Ed Engl 48(48):6832–6835Google Scholar
  96. 96.
    Ying Z, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65(1):104–120CrossRefGoogle Scholar
  97. 97.
    Bottaro E, Nastruzzi C (2016) “Off-the-shelf” microfluidic devices for the production of liposomes for drug delivery. Mater Sci Eng C Mater Biol Appl 64:29–33CrossRefGoogle Scholar
  98. 98.
    Wu Q, Gao D, Wei J, Jin F, Xie W, Jiang Y, Liu H (2014) Development of a novel multi-layer microfluidic device towards characterization of drug metabolism and cytotoxicity for drug screening. Chem Commun 50(21):2762–2764CrossRefGoogle Scholar
  99. 99.
    Kim HJ, Ingber DE (2013) Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb) 5(9):1130–1140. doi: 10.1039/c3ib40126j CrossRefGoogle Scholar
  100. 100.
    Chao P, Maguire T, Novik E, Cheng KC, Yarmush ML (2009) Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochem Pharmacol 78(6):625–632. doi: 10.1016/j.bcp.2009.05.013 CrossRefGoogle Scholar
  101. 101.
    Baudoin R, Prot JM, Nicolas G, Brocheton J, Brochot C, Legallais C, Benech H, Leclerc E (2012) Evaluation of seven drug metabolisms and clearances by cryopreserved human primary hepatocytes cultivated in microfluidic biochips. Xenobiotica 43(2):140–152CrossRefGoogle Scholar
  102. 102.
    Imura Y, Yoshimura E, Sato K (2012) Micro total bioassay system for oral drugs: evaluation of gastrointestinal degradation, intestinal absorption, hepatic metabolism, and bioactivity. Anal Sci 28(3):197–199CrossRefGoogle Scholar
  103. 103.
    Imura Y, Yoshimura E, Sato K (2012) Microcirculation system with a dialysis part for bioassays evaluating anticancer activity and retention. Anal Chem 85(3):1683–1688CrossRefGoogle Scholar
  104. 104.
    Wikswo JP, Curtis EL, Eagleton ZE, Evans BC, Kole A, Hofmeister LH, Matloff WJ (2013) Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13(18):3496–3511CrossRefGoogle Scholar
  105. 105.
    Maschmeyer I, Lorenz AK, Schimek K, Hasenberg T, Ramme AP, Hubner J, Lindner M, Drewell C, Bauer S, Thomas A, Sambo NS, Sonntag F, Lauster R, Marx U (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15(12):2688–2699. doi: 10.1039/c5lc00392j CrossRefGoogle Scholar
  106. 106.
    Lombardi D, Dittrich PS (2011) Droplet microfluidics with magnetic beads: a new tool to investigate drug–protein interactions. Anal Bioanal Chem 399(1):347–352CrossRefGoogle Scholar
  107. 107.
    Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106(34):14195–14200. doi: 10.1073/pnas.0903542106 CrossRefGoogle Scholar
  108. 108.
    Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2(2):119–125CrossRefGoogle Scholar
  109. 109.
    Mathur A, Loskill P, Hong SG, Lee JY, Marcus SG, Dumont L, Conklin BR, Willenbring H, Lee LP, Healy KE (2013) Human induced pluripotent stem cell-based microphysiological tissue models of myocardium and liver for drug development. Stem Cell Res Ther 4(Suppl 1):1–5Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of ScienceBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations