Advertisement

Design and Preparation of Microfluidics Device

Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

A rapid development has been witnessed since the birth of this miniaturized analytical equipment about forty years ago. And microfluidics, a discipline studying the manipulation and analysis of micro volume sample is also attracting the attention of academics with the annually increasing publications. At present, microfluidic device has become a powerful platform with diverse functions implicated in the fields of cellular biology, environmental study, food safety monitoring and micro synthesis, and has crossed the barrier of academic study into the daily life of normal customers. In this chapter, we will focus on several aspects concerning the design and fabrication of microfluidic devices, such as the development of device material, different methods of chip fabrication and functional units to realize purpose of intention. And in the end of this part, a brief future perspective is given to evaluate the potential applications of microfluidic device, especially with other portal devices like smart phone.

Keywords

Microfluidics design Chip fabrication Functional units integration 

References

  1. 1.
    Terry SC, Jerman JH, Angell JB (1979) Gas-chromatographic air analyzer fabricated on a silicon-wafer. IEEE T Electron Dev 26(12):1880–1886. doi: 10.1109/T-Ed.1979.19791 CrossRefGoogle Scholar
  2. 2.
    Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K (1990) Design of an open-tubular column liquid chromatograph using silicon chip technology. Sensor Actuat B-Chem 1(1–6):249–255. doi: 10.1016/0925-4005(90)80210-Q CrossRefGoogle Scholar
  3. 3.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems—a novel concept for chemical sensing. Sensor Actuat B-Chem 1(1–6):244–248. doi: 10.1016/0925-4005(90)80209-I CrossRefGoogle Scholar
  4. 4.
    Iliescu C, Taylor H, Avram M, Miao JM, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6(1):016505. doi: 10.1063/1.3689939 CrossRefGoogle Scholar
  5. 5.
    Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113(4):2550–2583. doi: 10.1021/cr300337x CrossRefGoogle Scholar
  6. 6.
    Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286. doi: 10.1146/annurev.bioeng.4.112601.125916 CrossRefGoogle Scholar
  7. 7.
    Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181–189. doi: 10.1038/nature13118 CrossRefGoogle Scholar
  8. 8.
    Wu J, He ZY, Chen QS, Lin JM (2016) Biochemical analysis on microfluidic chips. Trac-Trend Anal Chem 80:213–231. doi: 10.1016/j.trac.2016.03.013 CrossRefGoogle Scholar
  9. 9.
    Wu J, Chen Q, Lin JM (2017) Microfluidic technologies in cell isolation and analysis for biomedical applications. Analyst 142(3):421–441. doi: 10.1039/c6an01939k CrossRefGoogle Scholar
  10. 10.
    Squires TM, Quake SR (2005) Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026. doi: 10.1103/RevModPhys.77.977 CrossRefGoogle Scholar
  11. 11.
    Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442(7101):374–380. doi: 10.1038/nature05059 CrossRefGoogle Scholar
  12. 12.
    Martel JM, Toner M (2012) Inertial focusing dynamics in spiral microchannels. Phys Fluids 24(3):032001. doi: 10.1063/1.3681228 CrossRefGoogle Scholar
  13. 13.
    Sudarsan AP, Ugaz VM (2006) Multivortex micromixing. P Natl Acad Sci USA 103(19):7228–7233. doi: 10.1073/pnas.0507976103 CrossRefGoogle Scholar
  14. 14.
    Mao SF, Zhang J, Li HF, Lin JM (2013) Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication. Anal Chem 85(2):868–876. doi: 10.1021/ac303164b CrossRefGoogle Scholar
  15. 15.
    Liu W, Lin JM (2016) Online monitoring of lactate efflux by multi-channel microfluidic chip-mass spectrometry for rapid drug evaluation. Acs Sensors 1(4):344–347. doi: 10.1021/acssensors.5b00221 CrossRefGoogle Scholar
  16. 16.
    Liu W, Chen QS, Lin XX, Lin JM (2015) Online multi-channel microfluidic chip-mass spectrometry and its application for quantifying noncovalent protein-protein interactions. Analyst 140(5):1551–1554. doi: 10.1039/c4an02370f CrossRefGoogle Scholar
  17. 17.
    Wang NJ, Mao SF, Liu W, Wu J, Li HF, Lin JM (2014) Online monodisperse droplets based liquid-liquid extraction on a continuously flowing system by using microfluidic devices. Rsc Adv 4(23):11919–11926. doi: 10.1039/c4ra00984c CrossRefGoogle Scholar
  18. 18.
    Zhang J, Chen FM, He ZY, Ma Y, Uchiyama K, Lin JM (2016) A novel approach for precisely controlled multiple cell patterning in microfluidic chips by inkjet printing and the detection of drug metabolism and diffusion. Analyst 141(10):2940–2947. doi: 10.1039/c6an00395h CrossRefGoogle Scholar
  19. 19.
    Chen QS, Utech S, Chen D, Prodanovic R, Lin JM, Weitz DA (2016) Controlled assembly of heterotypic cells in a core-shell scaffold: organ in a droplet. Lab Chip 16(8):1346–1349. doi: 10.1039/c6lc00231e CrossRefGoogle Scholar
  20. 20.
    Lin XX, Leung KH, Lin L, Lin LY, Lin S, Leung CH, Ma DL, Lin JM (2016) Determination of cell metabolite VEGF(165) and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosens Bioelectron 79:41–47. doi: 10.1016/j.bios.2015.11.089 CrossRefGoogle Scholar
  21. 21.
    Fantuzzi A, Capria E, Mak LH, Dodhia VR, Sadeghi SJ, Collins S, Somers G, Hug E, Gilardi G (2010) An electrochemical microfluidic platform for human P450 drug metabolism profiling. Anal Chem 82(24):10222–10227. doi: 10.1021/ac102480k CrossRefGoogle Scholar
  22. 22.
    Zimmerman WB (2011) Electrochemical microfluidics. Chem Eng Sci 66(7):1412–1425. doi: 10.1016/j.ces.2010.03.057 CrossRefGoogle Scholar
  23. 23.
    Wu J, Jie MS, Dong XL, Qi HB, Lin JM (2016) Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform. Rapid Commun Mass Sp 30:80–86. doi: 10.1002/rcm.7643 CrossRefGoogle Scholar
  24. 24.
    Jie MS, Li HF, Lin LY, Zhang J, Lin JM (2016) Integrated microfluidic system for cell co-culture and simulation of drug metabolism. Rsc Adv 6(59):54564–54572. doi: 10.1039/c6ra10407j CrossRefGoogle Scholar
  25. 25.
    Lin XX, Chen QS, Liu W, Zhang J, Wang SQ, Lin ZX, Lin JM (2015) Oxygen-induced cell migration and on-line monitoring biomarkers modulation of cervical cancers on a microfluidic system. Sci Rep 5:0001. doi: 10.1038/Srep09643 Google Scholar
  26. 26.
    Lin XX, Chen QS, Liu W, Li HF, Lin JM (2014) A portable microchip for ultrasensitive and high-throughput assay of thrombin by rolling circle amplification and hemin/G-quadruplex system. Biosens Bioelectron 56:71–76. doi: 10.1016/j.bios.2013.12.061 CrossRefGoogle Scholar
  27. 27.
    Lefevre F, Chalifour A, Yu L, Chodavarapu V, Juneau P, Izquierdo R (2012) Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection. Lab Chip 12(4):787–793. doi: 10.1039/c2lc20998e CrossRefGoogle Scholar
  28. 28.
    Lafleur JP, Senkbeil S, Jensen TG, Kutter JP (2012) Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants. Lab Chip 12(22):4651–4656. doi: 10.1039/c2lc40543a CrossRefGoogle Scholar
  29. 29.
    Yoon JY, Kim B (2012) Lab-on-a-chip pathogen sensors for food safety. Sensors-Basel 12(8):10713–10741. doi: 10.3390/s120810713 CrossRefGoogle Scholar
  30. 30.
    Atalay YT, Vermeir S, Witters D, Vergauwe N, Verbruggen B, Verboven P, Nicolai BM, Lammertyn J (2011) Microfluidic analytical systems for food analysis. Trends Food Sci Tech 22(7):386–404. doi: 10.1016/j.tifs.2011.05.001 CrossRefGoogle Scholar
  31. 31.
    Govindarajan AV, Ramachandran S, Vigil GD, Yager P, Bohringer KF (2012) A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami. Lab Chip 12(1):174–181. doi: 10.1039/c1lc20622b CrossRefGoogle Scholar
  32. 32.
    Kim MS, Kim T, Kong SY, Kwon S, Bae CY, Choi J, Kim CH, Lee ES, Park JK (2010) Breast cancer diagnosis using a microfluidic multiplexed immunohistochemistry platform. PLoS ONE 5(5):e10441. doi: 10.1371/journal.pone.0010441 CrossRefGoogle Scholar
  33. 33.
    Ziółkowska K, Kwapiszewski R, Brzózka Z (2011) Microfluidic devices as tools for mimicking the in vivo environment. New J Chem 35(5):979–990. doi: 10.1039/c0nj00709a CrossRefGoogle Scholar
  34. 34.
    Sung JH, Shuler ML (2012) Microtechnology for mimicking in vivo tissue environment. Ann Biomed Eng 40(6):1289–1300. doi: 10.1007/s10439-011-0491-2 CrossRefGoogle Scholar
  35. 35.
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668. doi: 10.1126/science.1188302 CrossRefGoogle Scholar
  36. 36.
    Webb DP, Knauf B, Liu CQ, Hutt D, Conway P (2009) Productionisation issues for commercialisation of microfluidic based devices. Sensor Rev 29(4):349–354. doi: 10.1108/02602280910986601 CrossRefGoogle Scholar
  37. 37.
    Blow N (2007) Microfluidics: in search of a killer application. Nat Methods 4(8):665–668. doi: 10.1038/nmeth0807-665 CrossRefGoogle Scholar
  38. 38.
    Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32(7):347–350. doi: 10.1016/j.tibtech.2014.04.010 CrossRefGoogle Scholar
  39. 39.
    Jang JS, Simon VA, Feddersen RM, Rakhshan F, Schultz DA, Zschunke MA, Lingle WL, Kolbert CP, Jen J (2011) Quantitative miRNA expression analysis using fluidigm microfluidics dynamic arrays. BMC Genom 12:144. doi: 10.1186/1471-2164-12-144 CrossRefGoogle Scholar
  40. 40.
    Moonsamy PV, Williams T, Bonella P, Holcomb CL, Hoglund BN, Hillman G, Goodridge D, Turenchalk GS, Blake LA, Daigle DA, Simen BB, Hamilton A, May AP, Erlich HA (2013) High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array (TM) system for simplified amplicon library preparation. Tissue Antigens 81(3):141–149. doi: 10.1111/tan.12071 CrossRefGoogle Scholar
  41. 41.
    Ren KN, Zhou JH, Wu HK (2013) Materials for microfluidic chip fabrication. Accounts Chem Res 46(11):2396–2406. doi: 10.1021/ar300314s CrossRefGoogle Scholar
  42. 42.
    Fleger M, Neyer A (2006) PDMS microfluidic chip with integrated waveguides for optical detection. Microelectron Eng 83(4–9):1291–1293. doi: 10.1016/j.mee.2006.01.086 CrossRefGoogle Scholar
  43. 43.
    Liao Y, Song JX, Li E, Luo Y, Shen YL, Chen DP, Cheng Y, Xu ZZ, Sugioka K, Midorikawa K (2012) Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12(4):746–749. doi: 10.1039/c2lc21015k CrossRefGoogle Scholar
  44. 44.
    Lopez-Ruiz N, Curto VF, Erenas MM, Benito-Lopez F, Diamond D, Palma AJ, Capitan-Vallvey LF (2014) Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal Chem 86(19):9554–9562. doi: 10.1021/ac5019205 CrossRefGoogle Scholar
  45. 45.
    Abgrall P, Gue AM (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17(5):R15–R49. doi: 10.1088/0960-1317/17/5/R01 CrossRefGoogle Scholar
  46. 46.
    Fu JP, Mao P, Han J (2008) Artificial molecular sieves and filters: a new paradigm for biomolecule separation. Trends Biotechnol 26(6):311–320. doi: 10.1016/j.tibtech.2008.02.009 CrossRefGoogle Scholar
  47. 47.
    Reidy S, Lambertus G, Reece J, Sacks R (2006) High-performance, static-coated silicon microfabricated columns for gas chromatography. Anal Chem 78(8):2623–2630. doi: 10.1021/ac051846u CrossRefGoogle Scholar
  48. 48.
    Pipper J, Inoue M, Ng LFP, Neuzil P, Zhang Y, Novak L (2007) Catching bird flu in a droplet. Nat Med 13(10):1259–1263. doi: 10.1038/nm1634 CrossRefGoogle Scholar
  49. 49.
    Wang ZH, Jin G (2004) Silicon surface modification with a mixed silanes layer to immobilize proteins for biosensor with imaging ellipsometry. Colloid Surface B 34(3):173–177. doi: 10.1016/j.colurfb.2003.12.012 CrossRefGoogle Scholar
  50. 50.
    Northrup MA, Benett B, Hadley D, Landre P, Lehew S, Richards J, Stratton P (1998) A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Anal Chem 70(5):918–922. doi: 10.1021/Ac970486a CrossRefGoogle Scholar
  51. 51.
    Wilding P, Shoffner MA, Kricka LJ (1994) Pcr in a silicon microstructure. Clin Chem 40(9):1815–1818Google Scholar
  52. 52.
    Torisawa Y, Shiku H, Yasukawa T, Nishizawa M, Matsue T (2005) Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Biomaterials 26(14):2165–2172. doi: 10.1016/j.biomaterials.2004.05.028 CrossRefGoogle Scholar
  53. 53.
    Torisawa YS, Kaya T, Takii Y, Oyamatsu D, Nishizawa M, Matsue T (2003) Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures. Anal Chem 75(9):2154–2158. doi: 10.1021/ac026317u CrossRefGoogle Scholar
  54. 54.
    Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Progr 19(2):243–253. doi: 10.1021/bp020143k CrossRefGoogle Scholar
  55. 55.
    Sainiemi L, Nissila T, Kostiainen R, Ketola RA, Franssila S (2011) A microfabricated silicon platform with 60 microfluidic chips for rapid mass spectrometric analysis. Lab Chip 11(17):3011–3014. doi: 10.1039/c1lc20275h CrossRefGoogle Scholar
  56. 56.
    Kralj JG, Sahoo HR, Jensen KF (2007) Integrated continuous microfluidic liquid-liquid extraction. Lab Chip 7(2):256–263. doi: 10.1039/b610888a CrossRefGoogle Scholar
  57. 57.
    Harrison DJ, Fluri K, Seiler K, Fan ZH, Effenhauser CS, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science 261(5123):895–897. doi: 10.1126/science.261.5123.895 CrossRefGoogle Scholar
  58. 58.
    Easley CJ, Humphrey JAC, Landers JP (2007) Thermal isolation of microchip reaction chambers for rapid non-contact DNA amplification. J Micromech Microeng 17(9):1758–1766. doi: 10.1088/0960-1317/17/9/002 CrossRefGoogle Scholar
  59. 59.
    Lewis AC, Hamilton JF, Rhodes CN, Halliday J, Bartle KD, Homewood P, Grenfell RJP, Goody B, Harling AM, Brewer P, Vargha G, Milton MJT (2010) Microfabricated planar glass gas chromatography with photoionization detection. J Chromatogr 1217(5):768–774. doi: 10.1016/j.chroma.2009.12.009 CrossRefGoogle Scholar
  60. 60.
    Lin CH, Lee GB, Lin YH, Chang GL (2001) A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11(6):726–732. doi: 10.1088/0960-1317/11/6/316 CrossRefGoogle Scholar
  61. 61.
    French PJ, Sarro PM (1998) Surface versus bulk micromachining: the contest for suitable applications. J Micromech Microeng 8(2):45–53. doi: 10.1088/0960-1317/8/2/002 CrossRefGoogle Scholar
  62. 62.
    James CD, Okandan M, Mani SS, Galambos PC, Shul R (2006) Monolithic surface micromachined fluidic devices for dielectrophoretic preconcentration and routing of particles. J Micromech Microeng 16(10):1909–1918. doi: 10.1088/0960-1317/16/10/001 CrossRefGoogle Scholar
  63. 63.
    Abgrall P, Nguyen NT (2008) Nanofluidic devices and their applications. Anal Chem 80(7):2326–2341. doi: 10.1021/ac702296u CrossRefGoogle Scholar
  64. 64.
    Sniegowski JJ, de Boer MP (2000) IC-compatible polysilicon surface micromachining. Annu Rev Mater Sci 30:299–333. doi: 10.1146/annurev.matsci.30.1.299 CrossRefGoogle Scholar
  65. 65.
    de Boer MJ, Tjerkstra RW, Berenschot JW, Jansen HV, Burger CJ, Gardeniers JGE, Elwenspoek M, van den Berg A (2000) Micromachining of buried micro channels in silicon. J Microelectromech S 9(1):94–103. doi: 10.1109/84.825783 CrossRefGoogle Scholar
  66. 66.
    Paik SJ, Byun A, Lim JM, Park Y, Lee A, Chung S, Chang JK, Chun K, Cho DD (2004) In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sensor Actuat a-Phys 114(2–3):276–284. doi: 10.1016/j.sna.2003.12.029 CrossRefGoogle Scholar
  67. 67.
    Dijkstra M, de Boer MJ, Berenschot JW, Lammerink TS, Wiegerink RJ, Elwenspoek M (2007) A versatile surface channel concept for microfluidic applications. J Micromech Microeng 17(10):1971. doi: 10.1088/0960-1317/17/10/007 CrossRefGoogle Scholar
  68. 68.
    Kovacs GT, Maluf NI, Petersen KE (1998) Bulk micromachining of silicon. P IEEE 86(8):1536–1551. doi: 10.1109/5.704259 CrossRefGoogle Scholar
  69. 69.
    Lee S, Park S, Cho D (1999) The surface/bulk micromachining (SBM) process: A new method for fabricating released MEMS in single crystal silicon. J Microelectromech S 8(4):409–416. doi: 10.1109/84.809055 CrossRefGoogle Scholar
  70. 70.
    Zhang YL, Chen QD, Xia H, Sun HB (2010) Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today 5(5):435–448. doi: 10.1016/j.nantod.2010.08.007 CrossRefGoogle Scholar
  71. 71.
    Cheng JY, Yen MH, Wei CW, Chuang YC, Young TH (2005) Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip. J Micromech Microeng 15(6):1147–1156. doi: 10.1088/0960-1317/15/6/005 CrossRefGoogle Scholar
  72. 72.
    Hanada Y, Sugioka K, Kawano H, Ishikawa IS, Miyawaki A, Midorikawa K (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10(3):403–410. doi: 10.1007/s10544-007-9149-0 CrossRefGoogle Scholar
  73. 73.
    Kock M, Kirchner V, Schuster R (2003) Electrochemical micromachining with ultrashort voltage pulses-a versatile method with lithographical precision. Electrochim Acta 48(20–22):3213–3219. doi: 10.1016/S0013-4686(03)00374-8 CrossRefGoogle Scholar
  74. 74.
    Zhu D, Qu NS, Li HS, Zeng YB, Li DL, Qian SQ (2009) Electrochemical micromachining of microstructures of micro hole and dimple array. Cirp Ann-Manuf Techn 58(1):177–180. doi: 10.1016/j.cirp.2009.03.004 CrossRefGoogle Scholar
  75. 75.
    Li Y, Zheng YF, Yang G, Peng LQ (2003) Localized electrochemical micromachining with gap control. Sensor Actuat a-Phys 108(1–3):144–148. doi: 10.1016/S0924-4247(03)00371-6 Google Scholar
  76. 76.
    Bassu M, Surdo S, Strambini LM, Barillaro G (2012) Electrochemical micromachining as an enabling technology for advanced silicon microstructuring. Adv Funct Mater 22(6):1222–1228. doi: 10.1002/adfm.201102124 CrossRefGoogle Scholar
  77. 77.
    Iliescu C, Chen BT, Miao J (2008) On the wet etching of Pyrex glass. Sensor Actuat a-Phys 143(1):154–161. doi: 10.1016/j.sna.2007.11.022 CrossRefGoogle Scholar
  78. 78.
    Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11(4):287–300. doi: 10.1088/0960-1317/11/4/301 CrossRefGoogle Scholar
  79. 79.
    Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14(4):R15–R34. doi: 10.1088/0960-1317/14/4/Ro1 CrossRefGoogle Scholar
  80. 80.
    Golonka LJ, Zawada T, Radojewski J, Roguszczak H, Stefanow M (2006) LTCC microfluidic system. Int J Appl Ceram Tec 3(2):150–156. doi: 10.1111/j.1744-7402.2006.02072.x CrossRefGoogle Scholar
  81. 81.
    Vasudev A, Kaushik A, Jones K, Bhansali S (2013) Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing. Microfluid Nanofluid 14(3–4):683–702. doi: 10.1007/s10404-012-1087-3 CrossRefGoogle Scholar
  82. 82.
    Sollier E, Murray C, Maoddi P, Di Carlo D (2011) Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11(22):3752–3765. doi: 10.1039/c1lc20514e CrossRefGoogle Scholar
  83. 83.
    Becker H, Gartner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111. doi: 10.1007/s00216-007-1692-2 CrossRefGoogle Scholar
  84. 84.
    McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts Chem Res 35(7):491–499. doi: 10.1021/ar010110q CrossRefGoogle Scholar
  85. 85.
    Stroock AD, Whitesides GM (2003) Controlling flows in microchannels with patterned surface charge and topography. Accounts Chem Res 36(8):597–604. doi: 10.1021/ar0202870 CrossRefGoogle Scholar
  86. 86.
    Cha KJ, Kim DS (2011) A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge. Biomed Microdevices 13(5):877–883. doi: 10.1007/s10544-011-9557-z CrossRefGoogle Scholar
  87. 87.
    Eddings MA, Gale BK (2006) A PDMS-based gas permeation pump for on-chip fluid handling in microfluidic devices. J Micromech Microeng 16(11):2396–2402. doi: 10.1088/0960-1317/16/11/021 CrossRefGoogle Scholar
  88. 88.
    Zhang WH, Lin SC, Wang CM, Hu J, Li C, Zhuang ZX, Zhou YL, Mathies RA, Yang CYJ (2009) PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9(21):3088–3094. doi: 10.1039/b907254c CrossRefGoogle Scholar
  89. 89.
    Lee SW, Kim DJ, Ahn Y, Chai YG (2006) Simple structured polydimethylsiloxane microvalve actuated by external air pressure. P I Mech Eng C-J Mec 220(8):1283–1288. doi: 10.1243/09544062JMES177 CrossRefGoogle Scholar
  90. 90.
    Aumiller GD, Chandross EA, Tomlinson WJ, Weber HP (1974) Submicrometer resolution replication of relief patterns for integrated optics. J Appl Phys 45(10):4557–4562CrossRefGoogle Scholar
  91. 91.
    Masuda S, Washizu M, Nanba T (1989) Novel method of cell-fusion in field constriction area in fluid integrated-circuit. IEEE T Ind Appl 25(4):732–737. doi: 10.1109/28.31255 CrossRefGoogle Scholar
  92. 92.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984. doi: 10.1021/Ac980656z CrossRefGoogle Scholar
  93. 93.
    Zhao XM, Xia YN, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7(7):1069–1074. doi: 10.1039/A700145b CrossRefGoogle Scholar
  94. 94.
    Qin D, Xia YN, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502. doi: 10.1038/nprot.2009.234 CrossRefGoogle Scholar
  95. 95.
    Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci Pol Phys 38(3):415–434. doi: 10.1002/(Sici)1099-0488(20000201)38:3<415:Aid-Polb8>3.0.Co;2-Z CrossRefGoogle Scholar
  96. 96.
    Fuard D, Tzvetkova-Chevolleau T, Decossas S, Tracqui P, Schiavone P (2008) Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng 85(5–6):1289–1293. doi: 10.1016/j.mee.2008.02.004 CrossRefGoogle Scholar
  97. 97.
    Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Koster S, Duan H, Holtze C, Weitz DA, Griffiths AD (2008) Merten CA (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms (vol 15, pg 427. Chem Biol 15(8):875. doi: 10.1016/j.chembiol.2008.08.004 CrossRefGoogle Scholar
  98. 98.
    Leclerc E, Sakai Y, Fujii T (2003) Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed Microdevices 5(2):109–114. doi: 10.1023/A:1024583026925 CrossRefGoogle Scholar
  99. 99.
    Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6(11):1445–1449. doi: 10.1039/b605937f CrossRefGoogle Scholar
  100. 100.
    Fan R, Vermesh O, Srivastava A, Yen BKH, Qin LD, Ahmad H, Kwong GA, Liu CC, Gould J, Hood L, Heath JR (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26(12):1373–1378. doi: 10.1038/nbt.1507 CrossRefGoogle Scholar
  101. 101.
    Wang DJ, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28(6):281–290. doi: 10.1016/j.tibtech.2010.03.002 CrossRefGoogle Scholar
  102. 102.
    Liu V, Song YA, Han JY (2010) Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip. Lab Chip 10(11):1485–1490. doi: 10.1039/b923214a CrossRefGoogle Scholar
  103. 103.
    Zhou JW, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31(1):2–16. doi: 10.1002/elps.200900475 CrossRefGoogle Scholar
  104. 104.
    Begolo S, Colas G, Viovy JL, Malaquin L (2011) New family of fluorinated polymer chips for droplet and organic solvent microfluidics. Lab Chip 11(3):508–512. doi: 10.1039/c0lc00356e CrossRefGoogle Scholar
  105. 105.
    Lin LY, Jie MS, Chen FM, Zhang J, He ZY, Lin JM (2016) Efficient cell capture in an agarose-PDMS hybrid chip for shaped 2D culture under temozolomide stimulation. Rsc Adv 6(79):75215–75222. doi: 10.1039/c6ra15734c CrossRefGoogle Scholar
  106. 106.
    Eng G, Lee BW, Parsa H, Chin CD, Schneider J, Linkov G, Sia SK, Vunjak-Novakovic G (2013) Assembly of complex cell microenvironments using geometrically docked hydrogel shapes. P Natl Acad Sci USA 110(12):4551–4556. doi: 10.1073/pnas.1300569110 CrossRefGoogle Scholar
  107. 107.
    Sticker D, Rothbauer M, Lechner S, Hehenberger MT, Ertl P (2015) Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Lab Chip 15(24):4542–4554. doi: 10.1039/c5lc01028d CrossRefGoogle Scholar
  108. 108.
    Fiorini GS, Lorenz RM, Kuo JS, Chiu DT (2004) Rapid prototyping of thermoset polyester microfluidic devices. Anal Chem 76(16):4697–4704. doi: 10.1021/ac0498922 CrossRefGoogle Scholar
  109. 109.
    Ren KN, Dai W, Zhou JH, Su J, Wu HK (2011) Whole-Teflon microfluidic chips. P Natl Acad Sci USA 108(20):8162–8166. doi: 10.1073/pnas.1100356108 CrossRefGoogle Scholar
  110. 110.
    Grover WH, von Muhlen MG, Manalis SR (2008) Teflon films for chemically-inert microfluidic valves and pumps. Lab Chip 8(6):913–918. doi: 10.1039/b800600h CrossRefGoogle Scholar
  111. 111.
    Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Edit 37(5):550–575. doi: 10.1002/(Sici)1521-3773(19980316)37:5<550:Aid-Anie550>3.0.Co;2-G CrossRefGoogle Scholar
  112. 112.
    Alves P, Coelho JFJ, Haack J, Rota A, Bruinink A, Gil MH (2009) Surface modification and characterization of thermoplastic polyurethane. Eur Polym J 45(5):1412–1419. doi: 10.1016/j.eurpolymj.2009.02.011 CrossRefGoogle Scholar
  113. 113.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121. doi: 10.1016/j.jare.2013.07.006 CrossRefGoogle Scholar
  114. 114.
    Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663. doi: 10.1002/bit.22361 CrossRefGoogle Scholar
  115. 115.
    Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18(5–6):240–249. doi: 10.1016/j.drudis.2012.10.003 CrossRefGoogle Scholar
  116. 116.
    Jayawarna V, Ali M, Jowitt TA, Miller AE, Saiani A, Gough JE, Ulijn RV (2006) Nanostructured hydrogels for three-dimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv Mater 18(5):611–614. doi: 10.1002/adma.200501522 CrossRefGoogle Scholar
  117. 117.
    Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754. doi: 10.1016/j.tcb.2011.09.005 CrossRefGoogle Scholar
  118. 118.
    Zhang Y, Zhou CB, Nie JF, Le SW, Qin Q, Liu F, Li YP, Li JP (2014) Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing. Anal Chem 86(4):2005–2012. doi: 10.1021/ac403026c CrossRefGoogle Scholar
  119. 119.
    Hossain SMZ, Brennan JD (2011) beta-galactosidase-based colorimetric paper sensor for determination of heavy metals. Anal Chem 83(22):8772–8778. doi: 10.1021/ac202290d CrossRefGoogle Scholar
  120. 120.
    Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. Acs Appl Mater Inter 1(1):124–129. doi: 10.1021/am800043z CrossRefGoogle Scholar
  121. 121.
    Li X, Tian JF, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloid Surface B 76(2):564–570. doi: 10.1016/j.colsurfb.2009.12.023 CrossRefGoogle Scholar
  122. 122.
    Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136(1):77–82. doi: 10.1039/c0an00406e CrossRefGoogle Scholar
  123. 123.
    Olkkonen J, Lehtinen K, Erho T (2010) Flexographically printed fluidic structures in paper. Anal Chem 82(24):10246–10250. doi: 10.1021/ac1027066 CrossRefGoogle Scholar
  124. 124.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Edit 46(8):1318–1320. doi: 10.1002/anie.200603817 CrossRefGoogle Scholar
  125. 125.
    Muller RH, Clegg DL (1949) Automatic paper chromatography. Anal Chem 21(9):1123–1125. doi: 10.1021/Ac60033a032 CrossRefGoogle Scholar
  126. 126.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10. doi: 10.1021/ac9013989 CrossRefGoogle Scholar
  127. 127.
    Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. P Natl Acad Sci USA 105(50):19606–19611. doi: 10.1073/pnas.0810903105 CrossRefGoogle Scholar
  128. 128.
    Jokerst JC, Emory JM, Henry CS (2012) Advances in microfluidics for environmental analysis. Analyst 137(1):24–34. doi: 10.1039/c1an15368d CrossRefGoogle Scholar
  129. 129.
    Zhang YL, Zuo P, Ye BC (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 68:14–19. doi: 10.1016/j.bios.2014.12.042 CrossRefGoogle Scholar
  130. 130.
    Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133(44):17564–17566. doi: 10.1021/ja2071779 CrossRefGoogle Scholar
  131. 131.
    Klasner SA, Price AK, Hoeman KW, Wilson RS, Bell KJ, Culbertson CT (2010) Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal Bioanal Chem 397(5):1821–1829. doi: 10.1007/s00216-010-3718-4 CrossRefGoogle Scholar
  132. 132.
    Delaney JL, Hogan CF, Tian JF, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83(4):1300–1306. doi: 10.1021/ac102392t CrossRefGoogle Scholar
  133. 133.
    Li X, Tian JF, Nguyen T, Shen W (2008) Paper-based microfluidic devices by plasma treatment. Anal Chem 80(23):9131–9134. doi: 10.1021/ac801729t CrossRefGoogle Scholar
  134. 134.
    Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: asimple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095. doi: 10.1021/ac901071p CrossRefGoogle Scholar
  135. 135.
    Maattanen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J (2011) Paper-based planar reaction arrays for printed diagnostics. Sensor Actuat B-Chem 160(1):1404–1412. doi: 10.1016/j.snb.2011.09.086 CrossRefGoogle Scholar
  136. 136.
    Siegel AC, Phillips ST, Dickey MD, Lu NS, Suo ZG, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Funct Mater 20(1):28–35. doi: 10.1002/adfm.200901363 CrossRefGoogle Scholar
  137. 137.
    Chitnis G, Ding ZW, Chang CL, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11(6):1161–1165. doi: 10.1039/c0lc00512f CrossRefGoogle Scholar
  138. 138.
    Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674(2):227–233. doi: 10.1016/j.aca.2010.06.019 CrossRefGoogle Scholar
  139. 139.
    Cassano CL, Fan ZH (2013) Laminated paper-based analytical devices (LPAD): fabrication, characterization, and assays. Microfluid Nanofluid 15(2):173–181. doi: 10.1007/s10404-013-1140-x CrossRefGoogle Scholar
  140. 140.
    Nie ZH, Nijhuis CA, Gong JL, Chen X, Kumachev A, Martinez AW, Narovlyansky M, Whitesides GM (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4):477–483. doi: 10.1039/b917150a CrossRefGoogle Scholar
  141. 141.
    Zang DJ, Ge L, Yan M, Song XR, Yu JH (2012) Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem Commun 48(39):4683–4685. doi: 10.1039/c2cc16958d CrossRefGoogle Scholar
  142. 142.
    Chen QS, He ZY, Liu W, Lin XX, Wu J, Li HF, Lin JM (2015) Engineering cell-compatible paper chips for cell culturing, drug screening, and mass spectrometric sensing. Adv Healthc Mater 4(15):2291–2296. doi: 10.1002/adhm.201500383 CrossRefGoogle Scholar
  143. 143.
    Mu X, Liang QL, Hu P, Ren KN, Wang YM, Luo GA (2009) Laminar flow used as “liquid etch mask” in wet chemical etching to generate glass microstructures with an improved aspect ratio. Lab Chip 9(14):1994–1996. doi: 10.1039/b904769g CrossRefGoogle Scholar
  144. 144.
    Blazej RG, Kumaresan P, Mathies RA (2006) Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. P Natl Acad Sci USA 103(19):7240–7245. doi: 10.1073/pnas.0602476103 CrossRefGoogle Scholar
  145. 145.
    Zhou JH, Ren KN, Zheng YZ, Su J, Zhao YH, Ryan D, Wu HK (2010) Fabrication of a microfluidic Ag/AgCl reference electrode and its application for portable and disposable electrochemical microchips. Electrophoresis 31(18):3083–3089. doi: 10.1002/elps.201000113 CrossRefGoogle Scholar
  146. 146.
    Xu J, Wu D, Ip JY, Midorikawa K, Sugioka K (2015) Vertical sidewall electrodes monolithically integrated into 3D glass microfluidic chips using water-assisted femtosecond-laser fabrication for in situ control of electrotaxis. Rsc Adv 5(31):24072–24080. doi: 10.1039/c5ra00256g CrossRefGoogle Scholar
  147. 147.
    Kato M, Inaba M, Tsukahara T, Mawatari K, Hibara A, Kitamori T (2010) Femto liquid chromatography with attoliter sample separation in the extended nanospace channel. Anal Chem 82(2):543–547. doi: 10.1021/ac9017605 CrossRefGoogle Scholar
  148. 148.
    Liao Y, Cheng Y, Liu CN, Song JX, He F, Shen YL, Chen DP, Xu ZZ, Fan ZC, Wei XB, Sugioka K, Midorikawa K (2013) Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration. Lab Chip 13(8):1626–1631. doi: 10.1039/c3lc41171k CrossRefGoogle Scholar
  149. 149.
    Ho CMB, Ng SH, Li KHH, Yoon YJ (2015) 3D printed microfluidics for biological applications. Lab Chip 15(18):3627–3637. doi: 10.1039/c5lc00685f CrossRefGoogle Scholar
  150. 150.
    Bishop GW, Satterwhite-Warden JE, Kadimisetty K, Rusling JF (2016) 3D-printed bioanalytical devices. Nanotechnology 27(28):0001. doi: 10.1088/0957-4484/27/28/284002 CrossRefGoogle Scholar
  151. 151.
    Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161. doi: 10.1016/S0167-7799(03)00033-7 CrossRefGoogle Scholar
  152. 152.
    Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45(10):2740–2755. doi: 10.1039/c5cs00714c CrossRefGoogle Scholar
  153. 153.
    Gross BC, Erkal JL, Lockwood SY, Chen CP, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253. doi: 10.1021/ac403397r CrossRefGoogle Scholar
  154. 154.
    O’Neill PF, Ben Azouz A, Vazquez M, Liu J, Marczak S, Slouka Z, Chang HC, Diamond D, Brabazon D (2014) Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics 8(5):0001. doi: 10.1063/1.4898632 Google Scholar
  155. 155.
    McDonald JC, Chabinyc ML, Metallo SJ, Anderson JR, Stroock AD, Whitesides GM (2002) Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. Anal Chem 74(7):1537–1545. doi: 10.1021/ac010938q CrossRefGoogle Scholar
  156. 156.
    Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16(17):2193–2204. doi: 10.1002/adfm.200600434 CrossRefGoogle Scholar
  157. 157.
    Mannoor MS, Jiang ZW, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639. doi: 10.1021/nl4007744 CrossRefGoogle Scholar
  158. 158.
    Obata K, El-Tamer A, Koch L, Hinze U, Chichkov BN (2013) High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light-Sci Appl 2:0001. doi: 10.1038/lsa.2013.72 CrossRefGoogle Scholar
  159. 159.
    Au AK, Lee W, Folch A (2014) Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14(7):1294–1301. doi: 10.1039/c3lc51360b CrossRefGoogle Scholar
  160. 160.
    Hengsbach S, Lantada AD (2014) Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies. Biomed Microdevices 16(4):617–627. doi: 10.1007/s10544-014-9864-2 CrossRefGoogle Scholar
  161. 161.
    Nguyen NT, Huang XY, Chuan TK (2002) MEMS-micropumps: a review. J Fluid Eng-T Asme 124(2):384–392. doi: 10.1115/1.1459075 CrossRefGoogle Scholar
  162. 162.
    Duwairi H, Abdullah M (2007) Thermal and flow analysis of a magneto-hydrodynamic micropump. Microsyst Technol 13(1):33–39. doi: 10.1007/s00542-006-0258-0 CrossRefGoogle Scholar
  163. 163.
    Brask A, Kutter JP, Bruus H (2005) Long-term stable electroosmotic pump with ion exchange membranes. Lab Chip 5(7):730–738. doi: 10.1039/b503626g CrossRefGoogle Scholar
  164. 164.
    Byun CK, Abi-Samra K, Cho YK, Takayama S (2014) Pumps for microfluidic cell culture. Electrophoresis 35(2–3):245–257. doi: 10.1002/elps.201300205 CrossRefGoogle Scholar
  165. 165.
    Zeng SL, Chen CH, Mikkelsen JC, Santiago JG (2001) Fabrication and characterization of electroosmotic micropumps. Sensor Actuat B-Chem 79(2–3):107–114. doi: 10.1016/S0925-4005(01)00855-3 CrossRefGoogle Scholar
  166. 166.
    Sheybani R, Cobo A, Meng E (2015) Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors. Biomed Microdevices 17(4):0001. doi: 10.1007/s10544-015-9980-7 CrossRefGoogle Scholar
  167. 167.
    Clime L, Brassard D, Geissler M, Veres T (2015) Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications. Lab Chip 15(11):2400–2411. doi: 10.1039/c4lc01490a CrossRefGoogle Scholar
  168. 168.
    Kim J, Stockton AM, Jensen EC, Mathies RA (2016) Pneumatically actuated microvalve circuits for programmable automation of chemical and biochemical analysis. Lab Chip 16(5):812–819. doi: 10.1039/c5lc01397f CrossRefGoogle Scholar
  169. 169.
    Sahu PK, Golia A, Sen AK (2013) Investigations into mixing of fluids in microchannels with lateral obstructions. Microsyst Technol 19(4):493–501. doi: 10.1007/s00542-012-1617-7 CrossRefGoogle Scholar
  170. 170.
    DeLong SA, Moon JJ, West JL (2005) Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26(16):3227–3234. doi: 10.1016/j.biomaterials.2004.09.021 CrossRefGoogle Scholar
  171. 171.
    Wang F (2009) The signaling mechanisms underlying cell polarity and chemotaxis. Csh Perspect Biol 1(4):0001. doi: 10.1101/cshperspect.a002980 Google Scholar
  172. 172.
    Schmidt S, Friedl P (2010) Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 339(1):83–92. doi: 10.1007/s00441-009-0892-9 CrossRefGoogle Scholar
  173. 173.
    Chiang HC, Wang YS, Chou CH, Liao AT, Chu RM, Lin CS (2012) Overexpression of chemokine ligand 7 is associated with the progression of canine transmissible venereal tumor. Bmc Vet Res 8:0001. doi: 10.1186/1746-6148-8-216 CrossRefGoogle Scholar
  174. 174.
    Ahmed D, Chan CY, Lin SCS, Muddana HS, Nama N, Benkovic SJ, Huang TJ (2013) Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles. Lab Chip 13(3):328–331. doi: 10.1039/c2lc40923b CrossRefGoogle Scholar
  175. 175.
    Diao JP, Young L, Kim S, Fogarty EA, Heilman SM, Zhou P, Shuler ML, Wu MM, DeLisa MP (2006) A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6(3):381–388. doi: 10.1039/b511958h CrossRefGoogle Scholar
  176. 176.
    Keenan TM, Frevert CW, Wu A, Wong V, Folch A (2010) A new method for studying gradient-induced neutrophil desensitization based on an open microfluidic chamber. Lab Chip 10(1):116–122. doi: 10.1039/b913494h CrossRefGoogle Scholar
  177. 177.
    Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316. doi: 10.1021/La000600b CrossRefGoogle Scholar
  178. 178.
    Liu Y, Butler WB, Pappas D (2012) Spatially selective reagent delivery into cancer cells using a two-layer microfluidic culture system. Anal Chim Acta 743:125–130. doi: 10.1016/j.aca.2012.06.054 CrossRefGoogle Scholar
  179. 179.
    Sun M, Bithi SS, Vanapalli SA (2011) Microfluidic static droplet arrays with tuneable gradients in material composition. Lab Chip 11(23):3949–3952. doi: 10.1039/c1lc20709a CrossRefGoogle Scholar
  180. 180.
    Brammer KS, Choi C, Frandsen CJ, Oh S, Jin S (2011) Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomater 7(2):683–690. doi: 10.1016/j.actbio.2010.09.022 CrossRefGoogle Scholar
  181. 181.
    Kim NY, Adhikari KK, Dhakal R, Chuluunbaatar Z, Wang C, Kim ES (2015) Rapid, sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip. Sci Rep-Uk 5:0001. doi: 10.1038/Srep07807 Google Scholar
  182. 182.
    Balakrishnan SR, Hashim U, Letchumanan GR, Kashif M, Ruslinda AR, Liu WW, Veeradasan P, Prasad RH, Foo KL, Poopalan P (2014) Development of highly sensitive polysilicon nanogap with APTES/GOx based lab-on-chip biosensor to determine low levels of salivary glucose. Sensor Actuat a-Phys 220:101–111. doi: 10.1016/j.sna.2014.09.027 CrossRefGoogle Scholar
  183. 183.
    Osterberg FW, Rizzi G, Donolato M, Bejhed RS, Mezger A, Stromberg M, Nilsson M, Stromme M, Svedlindh P, Hansen MF (2014) On-chip detection of rolling circle amplified DNA molecules from Bacillus globigii spores and Vibrio cholerae. Small 10(14):2877–2882. doi: 10.1002/smll.201303325 CrossRefGoogle Scholar
  184. 184.
    Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29. doi: 10.1111/j.1749-6632.1962.tb13623.x CrossRefGoogle Scholar
  185. 185.
    Oh SJ, Park BH, Choi G, Seo JH, Jung JH, Choi JS, Kim DH, Seo TS (2016) Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. Lab Chip 16(10):1917–1926. doi: 10.1039/c6lc00326e CrossRefGoogle Scholar
  186. 186.
    Thompson BL, Birch C, Nelson DA, Li JY, DuVall JA, Le Roux D, Tsuei AC, Mills DL, Root BE, Landers JP (2016) A centrifugal microfluidic device with integrated gold leaf electrodes for the electrophoretic separation of DNA. Lab Chip 16(23):4569–4580. doi: 10.1039/c6lc00953k CrossRefGoogle Scholar
  187. 187.
    Lee A, Park J, Lim M, Sunkara V, Kim SY, Kim GH, Kim MH, Cho YK (2014) All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity. Anal Chem 86(22):11349–11356. doi: 10.1021/ac5035049 CrossRefGoogle Scholar
  188. 188.
    Yamashita H, Morita M, Sugiura H, Fujiwara K, Onoe H, Takinoue M (2015) Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device. J Biosci Bioeng 119(4):492–495. doi: 10.1016/j.jbiosc.2014.09.018 CrossRefGoogle Scholar
  189. 189.
    Araci IE, Su BL, Quake SR, Mandel Y (2014) An implantable microfluidic device for self-monitoring of intraocular pressure. Nat Med 20(9):1074–1078. doi: 10.1038/nm.3621 CrossRefGoogle Scholar
  190. 190.
    Kim DH, Viventi J, Amsden JJ, Xiao JL, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang YG, Hwang KC, Zakin MR, Litt B, Rogers JA (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517. doi: 10.1038/NMAT2745 CrossRefGoogle Scholar
  191. 191.
    Farra R, Sheppard NF, McCabe L, Neer RM, Anderson JM, Santini JT, Cima MJ, Langer R (2012) First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med 4(122):0001. doi: 10.1126/scitranslmed.3003276 CrossRefGoogle Scholar
  192. 192.
    Kim DH, Lu NS, Ma R, Kim YS, Kim RH, Wang SD, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim TI, Chowdhury R, Ying M, Xu LZ, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang YG, Coleman T, Rogers JA (2011) Epidermal electronics. Science 333(6044):838–843. doi: 10.1126/science.1206157 CrossRefGoogle Scholar
  193. 193.
    Meng E, Sheybani R (2014) Insight: implantable medical devices. Lab Chip 14(17):3233–3240. doi: 10.1039/c4lc00127c CrossRefGoogle Scholar
  194. 194.
    Yang K, Peretz-Soroka H, Liu Y, Lin F (2016) Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab Chip 16(6):943–958. doi: 10.1039/c5lc01524c CrossRefGoogle Scholar
  195. 195.
    Zhu HY, Sikora U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst 137(11):2541–2544. doi: 10.1039/c2an35071h CrossRefGoogle Scholar
  196. 196.
    Li BC, Li L, Guan A, Dong Q, Ruan KC, Hu RG, Li ZY (2014) A smartphone controlled handheld microfluidic liquid handling system. Lab Chip 14(20):4085–4092. doi: 10.1039/c4lc00227j CrossRefGoogle Scholar
  197. 197.
    Jiang J, Wang XH, Chao R, Ren YK, Hu CP, Xu ZD, Liu GL (2014) Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensor Actuat B-Chem 193:653–659. doi: 10.1016/j.snb.2013.11.103 CrossRefGoogle Scholar
  198. 198.
    Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10):3699–3707. doi: 10.1021/ac800112r CrossRefGoogle Scholar
  199. 199.
    Lu Y, Shi WW, Qin JH, Lin BC (2009) Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis 30(4):579–582. doi: 10.1002/elps.200800586 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations