Skip to main content

Finite Element Analysis of GTAW Welding Arc Based on Rotational Arc Sensor

  • Conference paper
  • First Online:
Transactions on Intelligent Welding Manufacturing

Part of the book series: Transactions on Intelligent Welding Manufacturing ((TRINWM))

  • 2597 Accesses

Abstract

A three-dimensional mathematical model of rotational gas tungsten arc welding (GTAW) was established according to magnetohydrodynamics (MHD) theory, the welding arc of conventional GTAW and rotational GTAW were simulated by FLUENT to get the arc plasma’s temperature field, velocity field and the static pressure field. The results show that the centrifugal force has little influence on the arc plasma because it’s far weaker than the electromagnetic force, and the arc shape as well as physical quantity distribution of these two kinds of welding methods are essentially consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy AB, Tanaka M, Tashiro S et al (2009) A computational investigation of the effectiveness of different shielding gas mixtures for arc welding. J Phys D Appl Phys 42(11):115205

    Article  Google Scholar 

  2. Lu S, Dong W, Li D et al (2009) Numerical study and comparisons of gas tungsten arc properties between argon and nitrogen. Comput Mater Sci 45(2):327–335

    Article  Google Scholar 

  3. Lago F, Gonzalez JJ, Freton P et al (2004) A numerical modelling of an electric arc and its interaction with the anode. Part I. The two-dimensional model. J Phys D Appl Phys 37(6):883

    Article  Google Scholar 

  4. Savaş A, Ceyhun V (2012) Finite element analysis of GTAW arc under different shielding gases. Comput Mater Sci 51(1):53–71

    Article  Google Scholar 

  5. Traidia A, Roger F, Chidley A et al (2011) Effect of helium-argon mixtures on the heat transfer and fluid flow in gas tungsten arc welding. World Acad Sci Eng Technol 73:854–861

    Google Scholar 

  6. Tashiro S, Tanaka M, Ushio M et al (2006) Prediction of energy source properties of free-burning arcs. Vacuum 80(11–12):1190–1194

    Article  Google Scholar 

  7. Lu F, Yao S, Lou S et al (2004) Modeling and finite element analysis on GTAW arc and weld pool. Comput Mater Sci 29(3):371–378

    Article  Google Scholar 

  8. Tanaka M, Ushio M, Lowke JJ (2004) Numerical study of gas tungsten arc plasma with anode melting. Vacuum 73(3–4):381–389

    Article  Google Scholar 

  9. Ding X, Li H, Yang L et al (2014) Numerical analysis of arc characteristics in two-electrode GTAW. Int J Adv Manuf Technol 70(9):1867–1874

    Article  Google Scholar 

  10. Faraji AH, Goodarzi M, Seyedein SH et al (2014) Experimental study and numerical modeling of arc and weld pool in stationary GTA welding of pure aluminum. Int J Adv Manuf Technol 71(9):2059–2207

    Article  Google Scholar 

  11. Shirvan AJ, Choquet I (2016) A review of cathode-arc coupling modeling in GTAW. Weld World 60(4):1–15

    Google Scholar 

  12. Luo J, Yao Z, Xue K (2016) Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding. Int J Adv Manuf Technol 84(1):647–661

    Google Scholar 

  13. Kanemaru S, Sasaki T, Sato T et al (2014) Study for TIG–MIG hybrid welding process. Weld World Le Soudage Dans Le Monde 58(1):11–18

    Article  Google Scholar 

  14. Chen QW, Hu TS, Xu YT (1986) Welding arc shape and arc temperature field. J Beijing Aeronaut Astronaut Inst 03:7–16

    Google Scholar 

  15. Inc Fluent (2014) FLUENT user’s guide. Fluent Inc., Lebanon

    Google Scholar 

  16. Inc Fluent (2003) GAMBIT modeling guide. Fluent Inc., Lebanon

    Google Scholar 

  17. Choo RTC, Szekely J, Westhoff RC (1992) On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles. part I. modeling the welding arc. Metall Mater Trans B 23B(6):357–369

    Article  Google Scholar 

  18. Barakos G, Mitsoulis E, Assimacopoulos D (1994) Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int J Num Methods Fluids 18(7):695–719

    Article  MATH  Google Scholar 

  19. Li HX (2011) Numerical analysis on keyhole gas tungsten arc welding. Dissertation, Lanzhou University of Technology, China

    Google Scholar 

  20. Hsu KC, Etemadi K, Pfender E (1983) Study of the free-burning high-intensity argon arc. J Appl Phys 54(3):1293–1301

    Article  Google Scholar 

Download references

Acknowledgement

The research is supported by the province science and technology of Jiangxi offend pass item (20142BBE50062). Innovative fund for graduate students of Nanchang University (cx2016075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Jia, J., Wang, X., Jia, S., Liu, J., Ai, S. (2018). Finite Element Analysis of GTAW Welding Arc Based on Rotational Arc Sensor. In: Chen, S., Zhang, Y., Feng, Z. (eds) Transactions on Intelligent Welding Manufacturing. Transactions on Intelligent Welding Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-10-5355-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5355-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5354-2

  • Online ISBN: 978-981-10-5355-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics