Skip to main content

Recent Trends in Catalytic Hydrolysis of Waste Lignocellulosic Biomass for Production of Fermentable Sugars

  • Conference paper
  • First Online:
Utilization and Management of Bioresources
  • 617 Accesses

Abstract

This article presents a comprehensive comparative assessment of the reaction conditions employed in the heterogeneous and homogeneous catalytic hydrolysis of waste lignocellulosic biomass (WLB) for the production of fermentable sugar (FS) for its subsequent conversion to renewable bioethanol. The effects of catalyst type and reaction conditions on the selectivity of FS in catalytic hydrolysis of low-cost WLB have been meticulously assessed. Moreover, representative radar plots demonstrating FS (substrate for bioethanol) yield in both homogeneous and heterogeneous catalytic protocols have been elucidated. An intensive global attention has recently been paid for the improvement of catalytic technologies pertaining to efficient pretreatment and hydrolysis for conversion of WLB to FS. Cellulose [(C6H10O5) n ], the foremost component in WLB materials, is a biodegradable polymer of simple carbohydrates, consisting of β (1, 4)-linkage of d-glucose units, which can be depolymerized to FS for the subsequent sustainable synthesis of renewable biofuels. In this article, a critical assessment of the production of FS through catalytic pretreatment and subsequent hydrolysis of WLB resources has been elucidated. The abundant presence of low-cost WLB and their potential application for synthesis of FS (d-glucose) and other derivatives (xylose) for subsequent bioethanol, biobutanol, bio-H2 production can provide an economically sustainable and environmentally benign avenue to mitigate energy crisis and global climate change.

The present study reveals the effects of important process parameters, viz. hydrolysis time, catalyst concentration, temperature and water to WLB ratio on the selectivity of d-glucose in both homogeneous and heterogeneous catalytic hydrolysis of WLB along with various advanced pretreatment intensification protocols. In order to improve the existing drawbacks, recent efforts have been made to develop advanced methods through utilization of ionic liquid, microwave, and infrared irradiation as well as ultrasonication to make the overall process more efficient and environmentally benign.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbadi A, Gotlieb KF, Bekkum H (1998) Study on solid acid catalyzed hydrolysis of maltose and related polysaccharides. Starch/Staerke 50(1):23–28

    Article  CAS  Google Scholar 

  • Bootsma JA, Shanks BH (2007) Cellobiose hydrolysis using organic–inorganic hybrid mesoporous silica catalysts. Appl Catal A 327:44–51

    Article  CAS  Google Scholar 

  • Borah AJ, Agarwal M, Poudyal M, Goyal A, Moholkar VS (2016) Mechanistic investigation in ultrasound induced enhancement of enzymatic hydrolysis of invasive biomass species. Bioresour Technol 213:342–349

    Article  CAS  Google Scholar 

  • Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35(1):298–307

    Article  CAS  Google Scholar 

  • Chatterjee S, Barman S, Chakraborty R (2016) Far infrared radiated energy-proficient rapid one-pot green hydrolysis of waste watermelon peel: optimization and heterogeneous kinetics of glucose synthesis. RSC Adv 6:74278–74287

    Article  CAS  Google Scholar 

  • Chen WH, Tu YJ, Sheen HK (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave assisted heating. Appl Energy 88:2726–2734

    Article  CAS  Google Scholar 

  • Church JA, Wooldrldge D (1981) Continuous high-solids acid hydrolysis of biomass in a 11/2-in. Plug flow reactor. Ind Eng Chem Prod Res Dev 20:378–382

    Article  Google Scholar 

  • Dhepe PL, Ohashi M, Inagaki S, Ichikawa M, Fukuoka A (2005) Hydrolysis of sugars catalyzed by water-tolerant sulfonated mesoporous silicas. Catal Lett 102(3–4):163–169

    Article  CAS  Google Scholar 

  • Diaz AB, Moretti MMS, Bussoli CB, Nunes CCC, Blandino A, Silva R, Gomes E (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323

    Article  CAS  Google Scholar 

  • Farahania SV, Kimb Y, Schalla C (2016) A coupled low temperature oxidative and ionic liquid pretreatment of lignocellulosic biomass. Catal Today 269:2–8

    Article  Google Scholar 

  • Gabhane J, William SPMP, Gadhe A, Rath R, Vaidya AN, Wate S (2014) Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag 34:498–503

    Article  CAS  Google Scholar 

  • Gütsch JS, Nousiainen T, Sixta H (2012) Comparative evaluation of autohydrolysis and acid-catalyzed hydrolysis of Eucalyptus globulus wood. Bioresour Technol 109:77–85

    Article  Google Scholar 

  • Hamelinck CN, Hooijdonk GV, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28(4):384–410

    Article  CAS  Google Scholar 

  • Hegner J, Pereira KC, Boef BD, Lucht BL (2010) Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis. Tetrahedron Lett 51(17):2356–2358

    Article  CAS  Google Scholar 

  • Hu L, Li Z, Wu Z, Lin L, Zhou S (2016) Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid. Ind Crop Prod 84:408–417

    Article  CAS  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    Article  Google Scholar 

  • Kim Y, Hendrickson R, Mosier N, Ladisch MR (2005) Plug-flow reactor for continuous hydrolysis of glucans and xylans from pretreated corn fiber. Energy Fuel 19:2189–2200

    Article  CAS  Google Scholar 

  • Kim I, Lee B, Park J, Choi S, Han J (2014) Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr Polym 99:563–567

    Article  CAS  Google Scholar 

  • Kumakura M, Kaetsu I (1978) Radiation-induced degradation and subsequent hydrolysis of waste cellulose materials. Int J Appl Radiat Isot 30:139–141

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuels production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kundu C, Lee J (2015) Optimization conditions for oxalic acid pretreatment of deacetylated yellow poplar for ethanol production. J Ind Eng Chem 32:298–304

    Article  CAS  Google Scholar 

  • Lai DM, Deng L, Li J, Liao B, Guo QX, Fu Y (2011) Hydrolysis of cellulose into glucose by magnetic solid acid. Chem Sus Chem 4(1):55–58

    Article  CAS  Google Scholar 

  • Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  CAS  Google Scholar 

  • Li J, Zhang X, Zhang M, Xiu H, He H (2015) Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl–FeCl3 as catalyst. Carbohydr Polym 117:917–922

    Article  CAS  Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Program 15(5):777–793

    Article  CAS  Google Scholar 

  • Meena S, Navatha S, Prabhavathi Devi BLA, Prasad RBN, Pandey A, Sukumaran RK (2015) Evaluation of Amberlyst15 for hydrolysis of alkali pretreated rice straw and fermentation to ethanol. Biochem Eng J 102:49–53

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  Google Scholar 

  • Murakami M, Kaneko Y, Kadokawa J (2007) Preparation of cellulose-polymerized ionic liquid composite by in-situ polymerization of polymerizable ionic liquid in cellulose-dissolving solution. Carbohydr Polym 69(2):378–381

    Article  CAS  Google Scholar 

  • Nata IF, Irawan C, Mardina P, Lee C (2015) Carbon-based strong solid acid for cornstarch hydrolysis. J Solid State Chem 230:163–168

    Article  CAS  Google Scholar 

  • Ninomiya K, Yamauchi T, Oginoc C, Shimizua N, Takahashi K (2014) Microwave pretreatment of lignocellulosic material in cholinium ionic liquid for efficient enzymatic saccharification. Biochem Eng J 90:90–95

    Article  CAS  Google Scholar 

  • Onda A, Ochi T, Yanagisawa K (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem 10:1033–1037

    Article  CAS  Google Scholar 

  • Pang J, Wang A, Zheng M, Zhang T (2010) Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun 46:6935–6937

    Article  CAS  Google Scholar 

  • Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA, Sathitsuksanoh N, Balan V, Sousa LC, Dale BE, Singh S, Simmons BA (2016) Evaluation of agave bagasse recalcitrance using AFEXTM, autohydrolysis, and ionic liquid pretreatments. Bioresour Technol 211:216–223

    Article  CAS  Google Scholar 

  • Ramadoss G, Muthukumar K (2014) Ultrasound assisted ammonia pretreatment of sugarcane bagasse for fermentable sugar production. Biochem Eng J 83:33–41

    Article  CAS  Google Scholar 

  • Ramli NAS, Amin NAS (2014) Catalytic hydrolysis of cellulose and oil palm biomass in ionic liquid to reducing sugar for levulinic acid production. Fuel Process Technol 128:490–498

    Article  CAS  Google Scholar 

  • Rick O, James RK, Joby M (2012) Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catal Today 190(1):89–97

    Article  Google Scholar 

  • Sakdaronnarong C, Saengsawang A, Siriyutta A, Jonglertjunya W, Nasongkla N, Laosiripojana N (2016) An integrated system for fractionation and hydrolysis of sugarcane bagasse using heterogeneous catalysts in aqueous biphasic system. Chem Eng J 285:144–156

    Article  CAS  Google Scholar 

  • Silva JRF, Cantelli KC, Soares MBA, Tres MV, Oliveira D, Meireles MAA, Oliveira JV, Treichel H, Mazutti MA (2015) Enzymatic hydrolysis of non-treated sugarcane bagasse using pressurized liquefied petroleum gas with and without ultrasound assistance. Renew Energy 83:674–679

    Article  CAS  Google Scholar 

  • Siripong P, Duangporn P, Takata E, Tsutsumi Y (2016) Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis. Bioresour Technol 203:303–308

    Article  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a system approach to understanding plant cell walls. Science 306(5705):2206–2211

    Article  CAS  Google Scholar 

  • Sousa LC, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347

    Article  CAS  Google Scholar 

  • Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47(48):9200–9211

    Article  CAS  Google Scholar 

  • Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme based hydrolysis process for ethanol from lignocellulosic materials: a review. Bioresour Com 2:707–738

    CAS  Google Scholar 

  • Takagaki A, Tagusagawa C, Domen K (2008) Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chem Commun 42:5363–5365

    Article  Google Scholar 

  • Tan IS, Lee KT (2015) Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr Polym 124:311–321

    Article  CAS  Google Scholar 

  • Villière A, Lassi U, Hu T, Paquet A, Rinaldi L, Cravotto G, Molina-Boisseau S, Marais M, Lévêque J (2013) Simultaneous microwave/ultrasound-assisted hydrolysis of starch-based industrial waste into reducing sugars. ACS Sustain Chem Eng 1:995–1002

    Article  Google Scholar 

  • Vyver V, Peng L, Geboers J, Schepers H, Clippel F, de Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem 12:1560–1563

    Article  Google Scholar 

  • Wang N, Zhang J, Wang H, Li Q, Wei S, Wang D (2014) Effects of metal ions on the hydrolysis of bamboo biomass in 1-butyl-3-methylimidazolium chloride with dilute acid as catalyst. Bioresour Technol 173:399–405

    Article  CAS  Google Scholar 

  • Werle LB, Garcia JC, Kuhn RC, Schwaab M, Foletto EL, Cancelier A, Jahn SL, Mazutti MA (2013) Ultrasound-assisted acid hydrolysis of palm leaves (Roystonea oleracea) for production of fermentable sugars. Ind Crop Prod 45:128–132

    Article  CAS  Google Scholar 

  • Xue J, Chen HZ, Kadar Z (2011) Optimization of microwave pretreatment on wheat straw for ethanol production. Biomass Bioenergy 35:3859–3864

    Article  Google Scholar 

  • Yan N, Zhao C, Gan WJ, Kou Y (2006) Polyols: a new generation of energy platform? Chin J Catal 27(12):1159–1163

    CAS  Google Scholar 

  • Zhong C, Wang C, Huang F, Wang F, Jia H, Zhou H, Wei P (2015) Selective hydrolysis of hemicellulose from wheat straw by a nanoscale solid acid catalyst. Carbohydr Polym 131:384–391

    Article  CAS  Google Scholar 

  • Zu S, Li W, Zhang M, Li Z, Wang Z, Jameel H, Chang H (2014) Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime. Bioresour Technol 152:364–370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Chatterjee, S., Chakraborty, R. (2018). Recent Trends in Catalytic Hydrolysis of Waste Lignocellulosic Biomass for Production of Fermentable Sugars. In: Ghosh, S. (eds) Utilization and Management of Bioresources. Springer, Singapore. https://doi.org/10.1007/978-981-10-5349-8_2

Download citation

Publish with us

Policies and ethics