Skip to main content

Graphene Oxide: Structural Updates and Enzyme Mimetic Properties for Biomedical Applications

  • Chapter
  • First Online:
Advanced Nanomaterials in Biomedical, Sensor and Energy Applications

Abstract

The structure of graphite oxide and functional groups present on it renders the remarkable properties and defines its novel applications. This chapter covers detailed information on the structure and functionalities present on the graphite oxide/graphene oxide. Apart from this, enzyme-mimetic properties of GO and GO-related materials and their applications are thoroughly discussed. The contents provided in this chapter may be useful for scientific community working in the field of material science, especially those engaged in graphene-related research. It may also benefit the people interested in the broad research areas of catalysis, bioinorganic chemistry, biomedical sciences, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.R. Dreyer, S. Park, W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228–240 (2010)

    Article  CAS  Google Scholar 

  2. (a) Y. Zhu, D.K. James, J.M. Tour, Adv. Mater. 24, 4924–4955 (2012); (b) J. Kim, L.J. Cote, J. Huang, Acc. Chem. Res. 45, 1356–1364 (2012)

    Google Scholar 

  3. (a) C. Su, K.P. Loh, Acc. Chem. Res. 46, 2275–2285 (2013); (b) D. Sharma, S. Kanchi, M.I. Sabela, K. Bisetty, Arab. J. Chem. 9, 238–261 (2016); (c) J. Lee, J. Kim, D.H. Min, Adv. Drug Deliv. Rev. 105, 275–287 (2016)

    Google Scholar 

  4. H.-P. Boehm, E. Stumpp, Carbon 45, 1381–1383 (2007)

    Article  CAS  Google Scholar 

  5. C. Schafheutl, J. Prakt. Chem. 21, 129–157 (1840)

    Article  Google Scholar 

  6. C. Schafheutl, Philos. Mag. 16, 570–590 (1840)

    Google Scholar 

  7. B.C. Brodie, Philos. Trans. R. Soc. Lond. 149, 249–259 (1859)

    Article  Google Scholar 

  8. L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)

    Article  CAS  Google Scholar 

  9. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  10. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  11. K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  12. (a) K.S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature, 457, 706–710 (2009); (b) P.W. Sutter, J.-I. Flege, E.A. Sutter, Nat. Mater. 7, 406–411 (2008)

    Google Scholar 

  13. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, J. Am. Chem. Soc. 131, 3611–3620 (2009)

    Article  CAS  Google Scholar 

  14. (a) S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217–224 (2009); (b) Y. Si, E.T. Samulski, Nano Lett. 8, 1679–1682 (2008); (c) H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Adv. Funct. Mater. 19, 1987–1992 (2009); (d) V.C. Tung, M.J. Allen, Y. Yang, R.B. Knaer, Nat. Nanotechnol. 4, 25–29 (2009); (e) G.X. Wang, J. Yang, J. Park, X.L. Gou, W. Bang, H. Liu, J. Yao, J. Phys. Chem. C. 112, 8192–8195 (2008); (f) Z. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-M. Ren, L.-P. Song, F. Wei, ACS Nano, 5, 191–198 (2011)

    Google Scholar 

  15. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye, Chem. Mater. 21, 3514–3520 (2009)

    Article  CAS  Google Scholar 

  16. B. Baluchamy, G. Arthi, B.D. Lingesh, J. Nanomed. Nanotechnol. 6, 1000253 (2015)

    Google Scholar 

  17. U. Hofmann, R. Holst, Ber. Dtsch. Chem. Ges. B 72, 754–771 (1939)

    Article  Google Scholar 

  18. G. Ruess, Monatsh. Chem. 76, 381–417 (1946)

    Article  Google Scholar 

  19. W. Scholz, H.P. Boehm, Z. Anorg. Allg. Chem. 369, 327–340 (1969)

    Article  CAS  Google Scholar 

  20. T. Nakajima, A. Mabuchi, R. Hagiwara, Carbon 26, 357–361 (1988)

    Article  CAS  Google Scholar 

  21. H. He, T. Riedl, A. Lerf, J. Klinowski, J. Phys. Chem. 100, 19954–19958 (1996)

    Article  CAS  Google Scholar 

  22. D. Hadzi, A. Novak, Faraday Trans. 51, 1514 (1955)

    Article  Google Scholar 

  23. A.M. Rodriguez, P.S.V. Jimenez, Carbon 24, 163 (1986)

    Article  CAS  Google Scholar 

  24. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannet, A. Zettl, Adv. Mater. 22, 4467–4472 (2010)

    Article  CAS  Google Scholar 

  25. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Chem. Mater. 18, 2740–2749 (2006)

    Article  CAS  Google Scholar 

  26. T. Szabo, E. Tombacz, E. Illes, I. Dekany, Carbon 44, 537–545 (2006)

    Article  CAS  Google Scholar 

  27. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhass, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  28. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, Nat. Chem. 1, 403–408 (2009)

    Article  CAS  Google Scholar 

  29. A. Dimiev, D.V. Kosynkin, L.B. Alemany, P. Chaguine, J.M. Tour, J. Am. Chem. Soc. 134, 2815–2822 (2012)

    Article  CAS  Google Scholar 

  30. (a) S. Saxena, T. Tyson, E. Negusse, J. Phys. Chem. Lett. 1, 3433–3437 (2010); (b) S. Saxena, T. Tyson, S. Shukla, E. Negusse, H. Chen, J. Bai, Appl. Phys. Lett. 99, 013104 (2011)

    Google Scholar 

  31. A.A. Vernekar, G. Mugesh, Chem. Eur. J. 18, 15122–15132 (2012)

    Article  CAS  Google Scholar 

  32. A.A. Vernekar, G. Mugesh, Chem. Eur. J. 19, 16699–16706 (2013)

    Article  CAS  Google Scholar 

  33. O. H. Schmitt, in Proceedings of Third International Biophysics Congress, Boston, MA, USA, 29 August–3 September 1969, p. 297

    Google Scholar 

  34. M. Garcia-Viloca, J. Gao, M. Karplus, D.G. Truhlar, Science 303, 186–195 (2004)

    Article  CAS  Google Scholar 

  35. R. Wolfenden, M.J. Snider, Acc. Chem. Res. 34, 938–945 (2001)

    Article  CAS  Google Scholar 

  36. R. Breslow, L.E. Overman, J. Am. Chem. Soc. 92, 1075–1077 (1970)

    Article  CAS  Google Scholar 

  37. Z. Dong, Y. Wang, Y. Yin, J. Liu, Curr. Opin. Colloid Interf. Sci. 16, 451–458 (2011)

    Article  CAS  Google Scholar 

  38. H. Wei, E. Wang, Chem. Soc. Rev. 42, 6060–6093 (2013)

    Article  CAS  Google Scholar 

  39. F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin, Angew. Chem. Int. Ed. 43, 6165–6169 (2004)

    Article  CAS  Google Scholar 

  40. M. De, S.S. Chou, V.P. Dravid, J. Am. Chem. Soc. 133, 17524–17527 (2011)

    Article  CAS  Google Scholar 

  41. O. Caremel-Harel, G. Storz, Annu. Rev. Microbiol. 54, 439–461 (2000)

    Article  Google Scholar 

  42. N.C. Veitch, Phytochemistry 65, 249–259 (2004)

    Article  CAS  Google Scholar 

  43. M. Hamid, Khalil-ur-Rehman, Food Chem. 115, 1177–1186 (2009)

    Article  CAS  Google Scholar 

  44. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, Nat. Nanotechnol. 2, 577–583 (2007)

    Article  CAS  Google Scholar 

  45. C. Su, M. Acik, K. Takai, J. Lu, S.J. Hao, Y. Zheng, P. Wu, Q. Bao, T. Enoki, Y.J. Chabal, K.P. Loh, Nat. Commun. 3, 1298 (2012)

    Article  Google Scholar 

  46. Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Adv. Mater. 22, 2206–2210 (2010)

    Article  CAS  Google Scholar 

  47. F. Qu, T. Li, M. Yang, Biosens. Bioelectron. 26, 3927–3931 (2011)

    Article  CAS  Google Scholar 

  48. W. Sun, X. Ju, Y. Zhang, X. Sun, G. Li, Z. Sun, Electrochem. Commun. 26, 113–116 (2013)

    Article  CAS  Google Scholar 

  49. S.Y. Lim, J. Ahn, J.S. Lee, M.G. Kim, C.B. Park, Small 8, 1994–1999 (2012)

    Article  CAS  Google Scholar 

  50. C. Huang, H. Bai, C. Li, G. Shi, Chem. Commun. 47, 4962–4964 (2011)

    Article  CAS  Google Scholar 

  51. Q. Wang, J. Lei, S. Deng, L. Zhang, H. Ju, Chem. Commun. 49, 916–918 (2013)

    Article  CAS  Google Scholar 

  52. Y. Tao, Y. Lin, Z. Huang, J. Ren, X. Qu, Adv. Mater. 25, 2594–2599 (2013)

    Article  CAS  Google Scholar 

  53. L. Zhan, C.M. Li, W.B. Wu, C.Z. Huang, Chem. Commun. 50, 11526–11528 (2014)

    Article  CAS  Google Scholar 

  54. M. Liu, H. Zhao, S. Chen, H. Yu, X. Quan, ACS Nano 6, 3142–3151 (2012)

    Article  CAS  Google Scholar 

  55. M. Liu, H. Zhao, S. Chen, H. Yu, X. Quan, Chem. Commun. 48, 7055–7057 (2012)

    Article  CAS  Google Scholar 

  56. L.N. Zhang, H.H. Deng, F.L. Lin, X.W. Xu, S.H. Weng, A.L. Liu, X.H. Lin, X.H. Xia, W. Chen, Anal. Chem. 86, 2711–2718 (2014)

    Article  CAS  Google Scholar 

  57. X.Q. Lin, H.H. Deng, G.W. Wu, H.P. Peng, A.L. Liu, X.H. Lin, X.H. Xia, W. Chen, Analyst 140, 5251–5256 (2015)

    Article  CAS  Google Scholar 

  58. Y. Dong, H. Zhang, Z.U. Rahman, L. Su, X. Chen, J. Hu, X. Chen, Nanoscale 4, 3969–3976 (2012)

    Article  CAS  Google Scholar 

  59. L. Song, H. Huang, W. Zhang, M. Ma, Z. Chen, N. Gu, Y. Zhang, Colloids Surf. A Physicochem. Eng. Asp. 506, 747–755 (2016)

    Article  CAS  Google Scholar 

  60. M. Kim, M.S. Kim, M.A. Woo, Y. Ye, K.S. Kang, J. Lee, H.G. Park, Nanoscale 6, 1529–1536 (2014)

    Article  CAS  Google Scholar 

  61. Y. Dong, J. Li, L. Shi, Z. Guo, ACS Appl. Mater. Interfaces 7, 15403–15413 (2015)

    Article  CAS  Google Scholar 

  62. J. Peng, J. Weng, Biosens. Bioelectron. 89, 652–658 (2017)

    Article  CAS  Google Scholar 

  63. E.S. Orth, J.E.S. Fonsaca, T.G. Almeida, S.H. Domingues, J.G.L. Ferreira, A.J.G. Zarbin, Chem. Commun. 50, 9891–9894 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, and Society for Research and Initiatives for Sustainable Technologies and Institutions-Biotechnology Industry Research Assistance Council (SRISTI-BIRAC) for the financial support. SG thanks the Indian Institute of Science for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amit A. Vernekar or Govindasamy Mugesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Vernekar, A.A., Ghosh, S., Mugesh, G. (2017). Graphene Oxide: Structural Updates and Enzyme Mimetic Properties for Biomedical Applications. In: Chattopadhyay, J., Srivastava, R. (eds) Advanced Nanomaterials in Biomedical, Sensor and Energy Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-5346-7_2

Download citation

Publish with us

Policies and ethics