Skip to main content

Paenibacillus polymyxa: A Prominent Biofertilizer and Biocontrol Agent for Sustainable Agriculture

  • Chapter
  • First Online:

Abstract

Agricultural practice is currently moving from traditional chemical fertilizers and pesticides toward sustainable and environment-friendly biofertilizer and biocontrol agents. Paenibacillus polymyxa (previously Bacillus polymyxa) is an agriculturally important microbe widely studied for its plant growth-promoting abilities. P. polymyxa is an endospore-forming bacterium that could colonize a range of ecological niches. It is commonly found in the agricultural soils, especially in close association with plants, and has been isolated from diverse geographic locations. P. polymyxa is renowned for its ability to act as a biocontrol agent against a wide array of plant pathogens. It can produce antibiotic compounds like polymyxin and antifungal compounds like fusaricidin that can suppress the growth of pathogens in both lab and field conditions. Apart from being a potent biocontrol agent, P. polymyxa strains are also known widely for their ability to fix atmospheric nitrogen, solubilize phosphate, and produce phytohormones; thus they could be used as effectual biofertilizers in commercial agriculture. The aim of this chapter is to provide an overview about both direct and indirect plant growth promotion accomplished by P. polymyxa in a wide variety of agricultural crops, through extensive reviewing of old and recent studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. doi:10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. doi:10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Anand R, Chanway CP (2013a) Detection of GFP-labeled Paenibacillus polymyxa in auto fluorescing pine seedling tissues. Biol Fertil Soils 49:111–118. doi:10.1007/s00374-012-0727-9

    Article  CAS  Google Scholar 

  • Anand R, Chanway C (2013b) N2-fixation and growth promotion in cedar colonized by an endophytic strain of Paenibacillus polymyxa. Biol Fertil Soils 49:235–239. doi:10.1007/s00374-012-0735-9

    Article  CAS  Google Scholar 

  • Anand R, Chanway CP (2013c) nif gene sequence and arrangement in the endophytic diazotroph Paenibacillus polymyxa strain P2b-2R. Biol Fertil Soils 49:965–970. doi:10.1007/s00374-013-0793-7

    Article  CAS  Google Scholar 

  • Anand R, Grayston S, Chanway CP (2013) N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microb Ecol 66:369–374. doi:10.1007/s00248-013-0196-1

    Article  CAS  PubMed  Google Scholar 

  • Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206. doi:10.1111/j.1472-765X.1991.tb00608.x

    Article  CAS  Google Scholar 

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. A Van Leeuw J Microb 64:253–260. doi:10.1007/BF00873085

    Article  CAS  Google Scholar 

  • Bachman MS, Nickell CD (2000) Investigating the genetic model for brown stem rot resistance in soybean. J Hered 91:316–321. doi:10.1093/jhered/91.4.316

    Article  CAS  PubMed  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. doi:10.1007/978-81-322-2776-2_18

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Bal A, Chanway CP (2012a) Evidence of nitrogen fixation in lodgepole pine inoculated with diazotrophic Paenibacillus polymyxa. Botany 90:891–896. doi:10.1139/b2012-044

    Article  CAS  Google Scholar 

  • Bal A, Chanway CP (2012b) 15N foliar dilution of western red cedar in response to seed inoculation with diazotrophic Paenibacillus polymyxa. Biol Fertil Soils 48:967–971. doi:10.1007/s00374-012-0699-9

    Article  Google Scholar 

  • Bal A, Anand R, Berge O, Chanway CP (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J Res 42:807–813. doi:10.1139/x2012-023

    Article  CAS  Google Scholar 

  • Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169. doi:10.1139/w02-002

    Article  CAS  PubMed  Google Scholar 

  • Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T (2000) Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2:333–342. doi:10.1046/j.1462-2920.2000.00114.x

    Article  CAS  PubMed  Google Scholar 

  • Bredemann G (1909) Untersuchungenüber die Variation und das Stickstoffbindungsvermögen des Bacillus asterosporus A. M. ausgeführtan 27 StämmenverschiedenerHerkunft. ZentralblBakteriolParasitenkdInfektionskrAbt 2 AllgLandwirtschTechnolBakteriol Gerung PflanzenpatholPflanzensch 22:44–89

    Google Scholar 

  • Çakmakçi R, Kantar F, Algur ÖF (1999) Sugar beet and barley yields in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. J Plant Nutr Soil Sci 162:437–442. doi:10.1002/(SICI)1522-2624(199908)162:4<437::AID-JPLN437>3.0.CO;2-W

    Article  Google Scholar 

  • Çakmakçi R, Donmez F, Aydin A, Sahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487. doi:10.1016/j.soilbio.2005.09.019

    Article  CAS  Google Scholar 

  • Chen X, Wang G, Xu M, Jin J, Liu X (2010) Antifungal peptide produced by Paenibacillus polymyxa BRF-1 isolated from soybean rhizosphere. Afr J Microbiol Res 4:2692–2698

    CAS  Google Scholar 

  • Claus D, Berkeley RCW (1986) The genus Bacillus. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology,1st edn, vol 2. Williams and Wilkins, Baltimore, pp 1105–1139

    Google Scholar 

  • da Mota FF, Nóbrega A, Marriel IE, Paiva E, Seldin L (2002) Genetic diversity of Paenibacillus polymyxa populations isolated from the rhizosphere of four cultivars of maize (Zea mays) planted in Cerrado soil. Appl Soil Ecol 20:119–132. doi:10.1016/S0929-1393(02)00016-1

    Article  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. doi:10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • Deng Y, Lu Z, Lu F, Wang Y, Bie X (2011) Study on an antimicrobial protein produced by Paenibacillus polymyxa JSa-9 isolated from soil. World J Microbiol Biotechnol 27:1803–1807. doi:10.1007/s11274-010-0638-6

    Article  CAS  Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. doi:10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. doi:10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Eastman AW, Weselowski B, Nathoo N, Yuan Z-C (2014a) Complete genome sequence of Paenibacillus polymyxa CR1, a plant growth-promoting bacterium isolated from the corn rhizosphere exhibiting potential for biocontrol, biomass degradation, and biofuel production. Genome Announc2:e01218–e01213. doi:10.1128/genomeA.01218-13

  • Eastman AW, Heinrichs DE, Yuan Z-C (2014b) Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness. BMC Genomics 15:851. doi:10.1186/1471-2164-15-851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emmert EA, Handelsman J (1999) Biocontrol of plant disease: a (gram) positive perspective. FEMS Microbiol Lett 171:1–9. doi:10.1111/j.1574-6968.1999.tb13405.x

    Article  CAS  PubMed  Google Scholar 

  • Fogarty WM, Griffin PJ (1975) Purification and properties of β-amylase produced by Bacillus polymyxa. J Appl Chem Biotech 25:229–238. doi:10.1002/jctb.5020250309

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 143:3921–3931. doi:10.1139/m95-015

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012. doi:10.6064/2012/963401

  • Glick BR (2015) Introduction to plant growth-promoting bacteria. In: Glick BR (ed) Beneficial plant-bacterial interactions. Springer International Publishing, Cham, pp 1–28. doi:10.1007/978-3-319-13921-0_1

    Google Scholar 

  • Gordon RL, Haynes WC, Pang CHN (1973) The genus Bacillus. Agricultural handbook no. 427. Agricultural Research Service, US Department of Agriculture, Washington DC

    Google Scholar 

  • Górska EB, Jankiewicz U, Dobrzyński J, Russel S, Pietkiewicz S, Kalaji H, Gozdowski D, Pińkowski R, Kowalczyk P (2015) Degradation and colonization of cellulose by diazotrophic strains of Paenibacillus polymyxa isolated from soil. J Biorem Biodegrad 6:271. doi:10.4172/2155-6199.1000271

    Article  CAS  Google Scholar 

  • Gouzou L, Burtin G, Philippy R, Bartoli F, Heulin T (1993) Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma 56:479–491. doi:10.1016/0016-7061(93)90128-8

    Article  Google Scholar 

  • Grau FH, Wilson PW (1962) Physiology of nitrogen fixation by Bacillus polymyxa. J Bacteriol 83:490–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Bai Z, Jin B, Zhang J, Li W, Zhuang G, Zhang H (2010) Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater. J Environ Sci 22:1407–1412. doi:10.1016/S1001-0742(09)60267-9

    Article  CAS  Google Scholar 

  • Haggag WM (2007) Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. Afr J Biotechnol 6:1568–1577

    CAS  Google Scholar 

  • Haggag WM, AboSedera SA (2000) Influence of iron sources and siderophores producing Pseudomonas fluorescens on crown rot. Egypt J Microbiol 28:1–16

    Google Scholar 

  • Haggag WM, Timmusk S (2008) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104:961–969. doi:10.1111/j.1365-2672.2007.03611.x

    Article  CAS  PubMed  Google Scholar 

  • Han J, Chen D, Huang J, Li X, Zhou WW, Gao W, Jia Y (2015) Antifungal activity and biocontrol potential of Paenibacillus polymyxa HT16 against white rot pathogen (Coniella diplodiella Speq.) in table grapes. Biocontrol Sci Technol 25:1120–1132. doi:10.1080/09583157.2015.1036003

    Article  Google Scholar 

  • He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol 73:168–178. doi:10.1128/AEM.02023-06

    Article  CAS  PubMed  Google Scholar 

  • Hensley DE, Smiley KL, Boundy JA, Lagoda AA (1980) Beta-amylase production by Bacillus polymyxa on a corn steep-starch-salts medium. Appl Environ Microbiol 39:678–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • International Committee on Systematic Acteriology (1994) Validation of the publication of new names and new combinations previously effectively published outside the IJSB: list no. 51. Int J Syst Evol Microbiol 44:852–852. doi:10.1099/00207713-44-4-852

    Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. doi:10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jeon YH, Chang SB, Hwang IG, Kim YH (2003) Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J Microbiol Biotechnol 13:881–891

    Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. doi:10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Kalininskaya TA (1968) Strains of B. polymyxa isolated from nitrogen-fixing bacterial associations. Mikrobiologiya 37:923–927

    Google Scholar 

  • Kim JF, Jeong H, Park SY, Kim SB, Park YK, Choi SK, Park SH (2010) Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681. J Bacteriol 192:6103–6104. doi:10.1128/JB.00983-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Kotnala B, Kim YH, Jeon Y (2015) Biological characteristics of Paenibacillus polymyxa GBR-1 involved in root rot of stored Korean ginseng. J Ginseng Res. doi:10.1016/j.jgr.2015.09.003

  • Kim YS, Kotnala B, Jeon Y (2016a) Biological control of apple anthracnose by Paenibacillus polymyxa APEC128, an antagonistic rhizobacterium. Plant Pathol J 32:251–259. doi:10.5423/PPJ.OA.01.2016.0015

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Kotnala B, Jeon Y (2016b) Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits. J Zhejiang Univ-Sc B. doi:10.1631/jzus.B1600117

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. doi:10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325–334. doi:10.1016/S0168-6496(97)00007-X

    Article  CAS  Google Scholar 

  • Ledingham GA, Neish AC (1954) Fermentative production of 2,3-butanediol. In: Underkofler LA, Hickey RJ (eds) Industrial fermentations, vol 2. Chemical Publishing Co Inc, New York, pp 27–93

    Google Scholar 

  • Lee SH, Cho YE, Park S-H, Balaraju K, Park JW, Lee SW, Park K (2013) An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41:49–58. doi:10.1007/s12600-012-0263-z

    Article  CAS  Google Scholar 

  • Li S, Yang D, Qiu M, Shao J, Guo R, Shen B, Yin X, Zhang R, Zhang N, Shen Q (2014) Complete genome sequence of Paenibacillus polymyxa SQR-21, a plant growth-promoting rhizobacterium with antifungal activity and rhizosphere colonization ability. Genome Announc2:e00281–e00214. doi:10.1128/genomeA.00281-14

  • Lindberg T, Granhall U (1984) Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of temperate cereals and forage grasses. Appl Environ Microbiol 48:683–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg T, Granhall U, Tomenius K (1985) Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions. Biol Fertil Soils 1:123–129. doi:10.1007/BF00301779

    Article  Google Scholar 

  • Ling N, Huang Q, Guo S, Shen Q (2011) Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f. sp. niveum. Plant Soil 341:485–493. doi:10.1007/s11104-010-0660-3

    Article  CAS  Google Scholar 

  • Liu WW, Mu W, Zhu BY, Du YC, Liu F (2008) Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric Sci China 7:1104–1114. doi:10.1016/S1671-2927(08)60153-4

    Article  CAS  Google Scholar 

  • Ma GZ, Wang SF, Bao ZH, Wu SJ, Xia ZQ, Li SD (2010) Isolation, purification and biological activity assessment of an antimicrobial protein from marine Paenibacillus polymyxa strain L1-9. Food Sci 31:335–339

    CAS  Google Scholar 

  • Ma M, Wang C, Ding Y, Li L, Shen D, Jiang X, Guan D, Cao F, Chen H, Feng R, Wang X, Ge Y, Yao L, Bing X, Yang X, Li J, Du B (2011) Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity. J Bacteriol 193:311–312. doi:10.1128/JB.01234-10

    Article  CAS  PubMed  Google Scholar 

  • Macé E (1889) TraitéPratique de Bactériologie, 1st edn. J.-B. Ballière and Fils, Paris

    Google Scholar 

  • Mageshwaran V, Walia S, Annapurna K (2012) Isolation and partial characterization of antibacterial lipopeptide produced by Paenibacillus polymyxa HKA-15 against phytopathogen Xanthomonas campestris pv. phaseoli M-5. World J Microbiol Biotechnol 28:909–917. doi:10.1007/s11274-011-0888-y

    Article  CAS  PubMed  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. doi:10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Mavingui P, Laguerre G, Berge O, Heulin T (1992) Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl Environ Microbiol 58:1894–1903

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Cleaner Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi:10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and agricultural. Biotechnology 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Cleaner Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol. 6; 68-75.

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. doi:10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Rahman M, Pandey P, Jha CK, Aeron A (eds) Islam MT. Springer International Publishing, Bacilli and Agrobiotechnology, pp 367–395. doi:10.1007/978-3-319-44409-3_16

    Google Scholar 

  • Mei L, Liang Y, Zhang L, Wang Y, Guo Y (2014) Induced systemic resistance and growth promotion in tomato by an indole-3-acetic acid-producing strain of Paenibacillus polymyxa. Ann Appl Biol 165:270–279. doi:10.1111/aab.12135

    Article  CAS  Google Scholar 

  • Nakamura LK (1987) Bacillus polymyxa (Prażmowski) Mace 1889 deoxyribonucleic acid relatedness and base composition. Int J Syst Bacteriol 37:391–397. doi:10.1099/00207713-37-4-391

    Article  CAS  Google Scholar 

  • Nielsen P, Sørensen J (1997) Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192. doi:10.1016/S0168-6496(96)00089-X

    Article  CAS  Google Scholar 

  • Niu B, Rueckert C, Blom J, Wang Q, Borriss R (2011) The genome of the plant growth-promoting rhizobacterium Paenibacillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides. J Bacteriol 193:5862–5863. doi:10.1128/JB.05806-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padda KP (2015) Impact of GFP-modification of Paenibacillus polymyxa on its ability to enhance growth of corn, canola and tomato seedlings. Master’s thesis, University of British Columbia, Vancouver, Canada. doi: 10.14288/1.0166773

  • Padda KP, Puri A, Chanway CP (2016a) Effect of GFP tagging of Paenibacillus polymyxa P2b-2R on its ability to promote growth of canola and tomato seedlings. Biol Fertil Soils 52:377–387. doi:10.1007/s00374-015-1083-3

    Article  CAS  Google Scholar 

  • Padda KP, Puri A, Chanway CP (2016b) Plant growth promotion and nitrogen fixation in canola by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study. Botany 94:1209–1217. doi:10.1139/cjb-2016-0075

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. Plant Health Instr. doi:10.1094/PHI-A-2006-1117-02

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Phi QT, Oh S-H, Park Y-M, Park S-H, Ryu C-M, Ghim S-Y (2008) Isolation and characterization of transposon-insertional mutants from Paenibacillus polymyxa E681 altering the biosynthesis of indole-3-acetic acid. Curr Microbiol 56:524–530. doi:10.1007/s00284-008-9118-8

    Article  CAS  PubMed  Google Scholar 

  • Piuri M, Sanchez-Rivas C, Ruzal SM (1998) A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett Appl Microbiol 27:9–13. doi:10.1046/j.1472-765X.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  • Porter R, Mccleskey CS, Levine M (1937) The facultative sporulating bacteria producing gas from lactose. J Bacteriol 33:163–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porter JN, Broschard R, Krupka G, Little P, Zellat JS (1949) Antibiotics derived from Bacillus polymyxa. Isolation and production of polymyxin. Ann NY Acad Sci 51:857–865

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Prażmowski A (1880) Untersuchungenüber die Entwickelungsgeschichte und FermentwirkungeinigerBacterien-Arten. PhD thesis, Universität Leipzig, Leipzig, Germany

    Google Scholar 

  • Priest FG (2009) Genus I: Paenibacillus Ash, Priest and Collins 1994, 852VP. In: De Vos P, Garrity GM, Jone D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, The Firmicutes, vol 3, 2nd edn. Springer, New York, pp 269–295. doi:10.1007/978-0-387-68489-5

    Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2015) Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biol Biochem 89:210–216. doi:10.1016/j.soilbio.2015.07.012

    Article  CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016a) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol Fertil Soils 52:119–125. doi:10.1007/s00374-015-1051-y

    Article  CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016b) Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis 69:123–129. doi:10.1007/s13199-016-0385-z

    Article  CAS  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. doi:10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Ravi AV, Musthafa KS, Jegathammbal G, Kathiresan K, Pandian SK (2007) Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Lett Appl Microbiol 45:219–223. doi:10.1111/j.1472-765X.2007.02180.x

    Article  CAS  PubMed  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Raza W, Yang W, Shen QR (2008) Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J Plant Pathol 90:419–430

    CAS  Google Scholar 

  • Raza W, Yang XM, Wu HS, Wang Y, Xu YC, Shen QR (2009) Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp nevium. Eur J Plant Pathol 125:471–483. doi:10.1007/s10658-009-9496-1

    Article  CAS  Google Scholar 

  • Raza W, Yuan J, Wu YC, Rajer FU, Huang Q, Qirong S (2015a) Biocontrol traits of two Paenibacillus polymyxa strains SQR-21 and WR-2 in response to fusaric acid, a phytotoxin produced by Fusarium species. Plant Pathol 64:1041–1052. doi:10.1111/ppa.12354

    Article  CAS  Google Scholar 

  • Raza W, Yuan J, Ling N, Huang Q, Shen Q (2015b) Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol Control 80:89–95. doi:10.1016/j.biocontrol.2014.09.004

    Article  CAS  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125. doi:10.1146/annurev.environ.032108.105046

    Article  Google Scholar 

  • Rybakova D, Wetzlinger U, Müller H, Berg G (2015) Complete genome sequence of Paenibacillus polymyxa strain Sb3-1, a soilborne bacterium with antagonistic activity toward plant pathogens. Genome Announc3:e00052–e00015. doi:10.1128/genomeA.00052-15

  • Ryu CM, Park CS (1997) Enhancement of plant growth induced by endospore forming PGPR strain, Bacillus polymyxa E681. In: Proceedings of the 4th international workshop on plant growth-promoting rhizobacteria: present status and |future prospects, Japan-OECD joint workshop, Sapporo, pp 209–211

    Google Scholar 

  • Ryu CM, Kim J, Choi O, Park SY, Park SH, Park CS (2005a) Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J Microbiol Biotechnol 15:984–991

    Google Scholar 

  • Ryu CM, Hu C-H, Locy R, Kloepper J (2005b) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292. doi:10.1007/s11104-004-0301-9

    Article  CAS  Google Scholar 

  • Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289. doi:10.1016/j.biocontrol.2006.04.014

    Article  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. doi:10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Seldin L, van Elsas JD, Penido EGC (1984) Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int J Syst Evol Microbiol 34:451–456. doi:10.1099/00207713-34-4-451

    CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. doi:10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Shi Y, Yang L, Wang X, Gao Y, Liu W, Lou K (2012) Biocontrol of bacterial spot diseases of muskmelon using Paenibacillus polymyxa G-14. Afr J Biotechnol 11:16845–16851. doi:10.5897/AJB12.1435

    Google Scholar 

  • Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol 41:707–713. doi:10.1139/m95-097

    Article  CAS  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. doi:10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. doi:10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229-4473.2015.00012.9

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. doi:10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420. doi:10.1099/00207713-30-1-225

    Article  Google Scholar 

  • Tang Q, Puri A, Padda KP, Chanway CP (2017) Biological nitrogen fixation and plant growth promotion of lodgepole pine by an endophytic diazotroph and its GFP-tagged derivative. Botany 95:611–619. doi: ​10.1139/cjb-2016-0300

    Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. doi:10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959. doi:10.1094/MPMI.1999.12.11.951

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852. doi:10.1016/S0038-0717(99)00113-3

    Article  CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300. doi:10.1128/AEM.71.11.7292-7300.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmusk S, Van West P, Gow NAR, Paul Huffstutler R (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481. doi:10.1111/j.1365-2672.2009.04123.x

    Article  CAS  PubMed  Google Scholar 

  • United Nations (2015) World population prospects: the 2015 revision, key findings and advance tables. Working paper no. ESA/P/WP.241. Department of Economic and Social Affairs, Population Division, United Nations. http://esa.un.org/unpd/wpp/Publications/Files/Key_Findings_WPP_2015.pdf. Cited 07 Sept 2016

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Ind J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  • von der Weid I, Paiva E, Nóbrega A, Dirk van Elsas J, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381. doi:10.1016/S0923-2508(00)00160-1

    Article  PubMed  Google Scholar 

  • Wang G, Zhou K, Zhang Q, Wang J (2003) Antagonism of Bacillus strain BRF-1 against plant pathogenic fungi. Chin J Biol Control 19:73–77

    Article  Google Scholar 

  • Xie J, Shi H, Du Z, Wang T, Liu X, Chen S (2016) Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci Rep 6:21329. doi:10.1038/srep21329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SJ, Kim BS (2014) Biocontrol of Fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology 42:158–166. doi:10.5941/MYCO.2014.42.2.158

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu SJ, Kim BS (2016) Evaluation of Paenibacillus polymyxa strain SC09-21 for biocontrol of Phytophthora blight and growth stimulation in pepper plants. Trop Plant Pathol 41:162–168. doi:10.1007/s40858-016-0077-5

    Article  Google Scholar 

  • Xu SJ, Bai Z, Jin B, Xiao R, Zhuang G (2014) Bioconversion of wastewater from sweet potato starch production to Paenibacillus polymyxa biofertilizer for tea plants. Sci Rep 4:4131. doi:10.1038/srep04131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. doi:10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yang H, Puri A, Padda KP, Chanway CP (2016) Effects of Paenibacillus polymyxa inoculation and different soil nitrogen treatments on lodgepole pine seedling growth. Can J Res 46:816–821. doi:10.1139/cjfr-2015-0456

    Article  CAS  Google Scholar 

  • Yang H, Puri A, Padda KP, Chanway CP (2017) Substrate utilization by endophytic Paenibacillus polymyxa that may facilitate bacterial entrance and survival inside various host plants. FACETS 2:120–130. doi: 10.1139/facets-2016-0031

  • Yao LJ, Wang Q, Fu XC, Mei RH (2008) Isolation and identification of endophytic bacteria antagonistic to wheat sharp eyespot disease. Chin J Biol Control 24:53–57

    Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. doi:10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Yegorenkova IV, Tregubova KV, Burygin GL, Matora LY, Ignatov VV (2016) Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245. Can J Microbiol 62:279–285. doi:10.1139/cjm-2015-0647

    Article  CAS  PubMed  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. doi:10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zhou K, Yamagishi M, Osaki M (2008) Paenibacillus BRF-1 has biocontrol ability against Phialophora gregata disease and promotes soybean growth. Soil Sci Plant Nutr 54:870–875. doi:10.1111/j.1747-0765.2008.00308.x

    Article  CAS  Google Scholar 

  • Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, Ma Z, Wang J (2016) Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem 105:162–173. doi:10.1016/j.plaphy.2016.04.025

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Yao L, Fang T, Du B, Ding Y (2008) Screening and study on biological characteristics of antagonistic bacteria against Fusarium solani. J Biotechnol Bull 1:156–159. doi:10.13560/j.cnki.biotech.bull.1985.2008.01.030

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Preet Padda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Padda, K.P., Puri, A., Chanway, C.P. (2017). Paenibacillus polymyxa: A Prominent Biofertilizer and Biocontrol Agent for Sustainable Agriculture. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5343-6_6

Download citation

Publish with us

Policies and ethics