Skip to main content

Arbuscular Mycorrhizal Symbiosis and Its Role in Plant Nutrition in Sustainable Agriculture

  • Chapter
  • First Online:
Book cover Agriculturally Important Microbes for Sustainable Agriculture

Abstract

The soil microbiota is associated with the formation and maintenance of the stability of aggregates for the production of proteins and extracellular polysaccharides, and can be a determining factor in controlling the diversity of vegetable and other organisms that live aboveground. Arbuscular mycorrhizal (AM) fungi have yet to be fully utilized in agriculture, because certain aspects of their symbiotic nature (e.g., biogeography, ecology) are not fully understood. This symbiosis is an association formed between the roots of plant species and members of soil fungi belonging to the phylum Glomeromycota. Species of this phylum are obligate biotrophs, which, during symbiosis, establish a source sink for plant photosynthates. In exchange, the symbiont provides, through the hyphae, uptake of inorganic nutrients and water from the soil solution and their translocation to the host plant. Establishment of this symbiosis implies changes in the host plant’s primary and secondary metabolism. This reprogramming transcriptome induced by the symbiont results in mycorrhizal plant acclimatization to environmental stresses. This chapter attempts to highlight the contribution that AM symbiosis can play as an ecosystem service provider to guarantee host plant nutrition under abiotic stress conditions, and discusses briefly the exploitation of arbuscular mycorrhiza in sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour A, Kalbasi M, Hajrasuliha S, Fotovat A (2008) Effect of organic matter and salinity on ethylenediaminetetraacetic acid-extractable and solution species of cadmium and lead in three agricultural soils. Commun Soil Sci Plant Anal 39:983–1005

    Article  CAS  Google Scholar 

  • Abd Allah EF, Hashem A, Alqarawi AA, Bahkali AH, Alwhibi MS (2015) Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi J Biol Sci 22:274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel Latef AAH (2010) Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res Comm 38:43–55

    Article  CAS  Google Scholar 

  • Abdel Latef AAH (2011a) Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.) Mycorrhiza 21:495–503

    Article  CAS  PubMed  Google Scholar 

  • Abdel Latef AAH (2011b) Ameliorative effect of calcium chloride on growth, antioxidant enzymes, protein patterns and some metabolic activities of canola (Brassica napus L.) under seawater stress. J Plant Nutr 34:1303–1320

    Article  CAS  Google Scholar 

  • Abdel Latef AAH, Chaoxing HJ (2014) Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? Plant Growth Regul 33:644–653

    Article  CAS  Google Scholar 

  • Abdel Latef AAH, Miransari M (2014) The role of arbuscular mycorrhizal fungi in salt stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 2. Springer, New York, pp 23–39

    Chapter  Google Scholar 

  • Abdel Latef AAH, Shaddad KAM, Ismail MA, Abu Alhmad FM (2009) Benzyladenine can alleviate saline injury of two roselle (Hibiscus sabdariffa) cultivars via equilibration of cytosolutes including anthocyanins. Int J Agric Biol 11:151–157

    CAS  Google Scholar 

  • Aggarwal A, Kadian N, Neetu K, Tanwar A, Gupta KK (2012) Arbuscular mycorrhizal symbiosis and alleviation of salinity stress. J Appl Nat Sci 4:144–155

    CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Ahmad P, Ozturk M, Sharma S, Gucel S (2014) Effect of sodium carbonate–induced salinity–alkalinity on some key osmoprotectants, protein profile, antioxidant enzymes, and lipid peroxidation in two mulberry (Morus alba L.) cultivars. J Plant Interact 9:460–467

    Article  CAS  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci 6:868. doi:10.3389/fpls.2015.00868

    PubMed  PubMed Central  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313

    Chapter  Google Scholar 

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Alazem M, Lin NA-S (2015) Roles of plant hormones in the regulation of host–virus interactions. Mol Plant Pathol 16:529–540

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42

    Article  Google Scholar 

  • Amir H, Pineau R (2003) Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. Can J Microbiol 49:288–293

    Article  CAS  PubMed  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Ardakani MR, Pietsch G, Moghaddam A, Raza A, Friedel JK (2009) Response of root properties to tripartite symbiosis between lucerne (Medicago sativa L.), rhizobia and mycorrhiza under dry organic farming conditions. Am J Agric Biol Sci 4:266–277

    Article  Google Scholar 

  • Aroca R, Ruiz-Lozano JM, Zamarreño ÁM, Paz JA, Garcia-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170:47–55

    Article  CAS  PubMed  Google Scholar 

  • Arriagada CA, Herrera MA, Ocampo JA (2007) Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. J Environ Manag 84:93–99

    Article  CAS  Google Scholar 

  • Aslam R, Bostan N, Nabgha-e-Amen MM, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plants Res 5:7108–7118

    CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta analytical and conceptual perspectives. Environ Pollut 147:609–614

    Article  CAS  PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Article  Google Scholar 

  • Augé RM, Moore JL (2005) Arbuscular mycorrhizal symbiosis and plant drought resistance. In: Mehrotra VS (ed) Mycorrhiza: role and applications. Allied Publishers Limited, New Delhi, pp 136–157

    Google Scholar 

  • Augé RM, Stodola AJW, Brown MS, Bethlenfalvay GJ (1992) Stomatal response of mycorrhizal cowpea and soybean to short-term osmotic stress. New Phytol 120:117–125

    Article  Google Scholar 

  • Augé RM, Saxton AM, Toler HD (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24

    Article  PubMed  Google Scholar 

  • Azcón-Aguilar C, Barea JM (2015) Nutrient cycling in the mycorrhizosphere. J Soil Sci Plant Nutr 15:372–396

    Google Scholar 

  • Badri A, Stefani FOP, Lachance G, Roy-Arcand L, Beaudet D, Vialle A, Hijri M (2016) Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome. Mycorrhiza 26:721–733

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from Indo-Gangetic Plain of India. Geomicrobiology J 34(5):2017. doi.org/10.1080/01490451.2016.1219431

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from Indo-Gangetic Plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the holy grail—a further step in understanding metal hyperaccumulation? New Phytol155:1–4.

    Google Scholar 

  • Balestrini R, Lumini E, Borriello R, Bianciotto V (2015) Plant–soil biota interactions. In: Paul EA (ed) Soil microbiology, ecology and biochemistry. Academic/Elsevier, London, pp 311–338

    Chapter  Google Scholar 

  • Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. PlantMol Biol 69:473–88

    Google Scholar 

  • Barzana G, Aroca R, Ruiz-Lozano JM (2015) Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant Cell Environ 38:1613–1627

    Article  CAS  PubMed  Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538

    Article  CAS  Google Scholar 

  • Batty LC, Dolan C (2013) The potential use of phytoremediation for sites with mixed organic and inorganic contamination. Cri Rev Environ Sci Tech 43:217–259

    Article  CAS  Google Scholar 

  • Behm JE, Kiers TE, Cornelissen H (2014) A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits. J Ecol 102:315–327

    Article  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotech 84:11–18

    Article  CAS  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. doi:10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  • Berthelin J, Munier-Lamy C, Leyval C (1995) Effect of microorganisms on mobility of heavy metals in soils. In: Huang PM, Berthelin J, Bollag JM, McGill WB, Page AL (eds) Environmental impact of soil component interactions. Metals, other inorganics and microbial activities. CRC Lewis, London, pp 3–17

    Google Scholar 

  • Bethlenfalvay GJ, Franson RL (1989) Manganese toxicity alleviated by mycorrhizae in soybean. J Plant Nutr 12:953–970

    Article  CAS  Google Scholar 

  • Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos JN, Moora M, Rillig MC, Stock WD, Tibbett M, Zobel M (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaha G, Stelzl U, Spahn CMT, Aggrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309

    Article  CAS  PubMed  Google Scholar 

  • Błaszkowski J, Chwat G, Goto BT (2014) Rhizophagus natalensis, a new species in the Glomeromycota. Mycotaxon 129:97–108

    Article  Google Scholar 

  • Bonfante P, Perotto S (2000) Outside and inside the roots: cell to-cell interactions among arbuscular mycorrhizal fungi, bacteria and host plants. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. APS Press, St. Paul, pp 141–155

    Google Scholar 

  • Bothe H (2011) Plants in heavy metal soils. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Soil Biology. Springer-Verlag, Heidelberg, pp 35–57

    Chapter  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystem. Adv Ecol Res 21:300–313

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Bucher M, Wegmuller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507

    Article  CAS  PubMed  Google Scholar 

  • Bucher M, Hause B, Krajinski F, Küster H (2014) Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytol 204:833–840

    Article  CAS  PubMed  Google Scholar 

  • Burchell MJ (2010) Why do some people reject panspermia? J Cosmol 5:828–832

    Google Scholar 

  • Calvo-Polanco M, Molina S, Zamarreño ÁM, García-Mina JM, Aroca R (2014) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281

    Article  CAS  Google Scholar 

  • Carbonnel S, Gutjahr C (2014) Control of arbuscular mycorrhiza development by nutrient signals. Front Plant Sci 5:462. doi:org/10.3389/fpls.2014.00462

    Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mar C, Tondelli A, Atanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Cerin P (2006) Bringing economic opportunity into line with environmental influence: a discussion on the Coase theorem and the Porter and van der Linde hypothesis. Ecol Econ 56:209–225

    Article  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fert Soils 48:489–499

    Article  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    Article  CAS  PubMed  Google Scholar 

  • Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrin R, Guerrieri E (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 171:1009–1023

    PubMed  PubMed Central  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2009) Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol 184:962–974

    Article  CAS  PubMed  Google Scholar 

  • Cicatelli A, Todeschini V, Lingua G, Torrigiani P, Castiglione S (2014) Epigenetic control of heavy metal stress response in mycorrhizal versus non-mycorrhizal poplar plants. Environ Sci Pollut Res 21:1723–1737

    Article  CAS  Google Scholar 

  • Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29

    Article  CAS  PubMed  Google Scholar 

  • Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol 5:368. doi:org/10.3389/fmicb.2014.00368

    Google Scholar 

  • Collins CD, Foster BL (2009) Community-level consequences of mycorrhizae depend on phosphorus availability. Ecol 90:2567–2576

    Article  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Corradi N, Bonfante P (2012) The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS Pathog 8(4):e1002600. doi:10.1371/journal.ppat.1002600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosme M, Wurst S (2013) Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol Biochem 57:436–443

    Article  CAS  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291

    Chapter  Google Scholar 

  • Dash S, Gupta N (2011) Microbial bioinoculants and their role in plant growth and development. Int J Biotech Mol Biol Res 2:232–251

    CAS  Google Scholar 

  • Delaux PM, Séjalon-Delmas N, Bécard G, Ané JM (2013) Evolution of the plant–microbe symbiotic ‘toolkit’. Trends Plant Sci 18:298–304

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98

    Chapter  Google Scholar 

  • Doornbos RF, Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280

    Chapter  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid-phosphatases in plant phosphorus-metabolism. Physiol Plantarum 90:791800

    Article  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of rhizobium with root colonising pseudomonas. Plant Soil 369:453–465

    Article  CAS  Google Scholar 

  • Egamberdieva D, Li L, Lindström K, Räsänen L (2016) A synergistic interaction between salt tolerant Pseudomonas and Mezorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress. Appl Microb 100(6):2829–2841

    Google Scholar 

  • El-Nashar YI (2016) Response of snapdragon (Antirrhinum majus L.) to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations. Photosynthetica 54:1–9

    Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. doi:org/10.1155/2015/756120

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives. Sinauer Associates, Sunderland

    Google Scholar 

  • Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Combier JP (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166:281–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • FAO (2009) High level expert forum—how to feed the world in 2050, economic and social development. Food and Agricultural Organization of the United Nations, Rome.

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farrant JM, Ruelland E (2015) Plant signalling mechanisms in response to the environment Environ Exp Bot 114:1–3

    Google Scholar 

  • Favre P, Bapaume L, Bossolini E, Delorenzi M, Falquet L, Reinhardt D (2014) A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC Plant Biol 14:333. doi:10.1186/s12870-014-0333-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fedderman N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza—the role of gene expression, phosphorus nutrition and symbiotic efficiency. Fungal Ecol 3:1–8

    Article  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Fernández I, Merlos M, López-Ráez JA, Martínez-Medina A, Ferrol N, Azcón C, Bonfante P, Flors V, Pozo MJ (2014) Defense related phytohormones regulation in arbuscular mycorrhizal symbioses depends on the partner genotypes. J Chem Ecol 40:791–803

    Article  PubMed  CAS  Google Scholar 

  • Finlay RD (2004) Mycorrhizal fungi and their multifunctional roles. Mycol 18:91–96

    Google Scholar 

  • Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184:975–987

    Article  CAS  PubMed  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Niinemets U, Gallé A, Barbour MM, Centritto M, Diaz-Espejo A, Douthe C, Galmés J, Ribas-Carbo M, Rodriguez PL, Rosselló F, Soolanayakanahally R, Tomas M, Wright IJ, Farquhar GD, Medrano H (2013) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117:1–3

    Article  CAS  Google Scholar 

  • Foresight (2011) The future of global food and farming. Final Project Report Government, Office for Science London, London

    Google Scholar 

  • Furihata T, Suzuki M, Sakurai H (1992) Kinetic characterization of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant Cell Physiol 33:1151–1157

    CAS  Google Scholar 

  • Furini A, Manara A, DalCorso G (2015) Editorial: environmental phytoremediation: plants and microorganisms at work. Front Plant Sci 6:520. doi:10.3389/fpls.2015.00520

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallou A, Declerck S, Cranenbrouck S (2012) Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization. Funct Integr Genomics 12:183–198

    Article  CAS  PubMed  Google Scholar 

  • Gamper HA, Walker C, Schubler A (2009) Diversispora celata sp. nov: molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. New Phytol 182:495–506

    Article  CAS  PubMed  Google Scholar 

  • García-Garrido JM, León-Morcillo RJ, Martín-Rodríguez JA, OcampoBote JA (2010) Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations. Mol Plant-Microbe Interact 23:651–664

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202

    Article  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, van Tuinen D, Dumas-Gaudot E, Dulieu H (2001) Exploring the genome of glomalean fungi. In: Hock B (ed) The mycota IX. Springer, Berlin, Germany, pp 3–17

    Google Scholar 

  • Gianinazzi-Pearson V, van Tuinen D, Wipf D, Dumas-Gaudot E, Recorbet G, Liu JY, Doidy D, Redecker FN (2012) Exploring the genome of glomeromycotan fungi. In: Hock B (ed) 2nd edn. The mycota IX, fungal associations, Springer-Verlag, Berlin, pp 1–21

    Google Scholar 

  • Gilbert N (2009) Environment: the disappearing nutrient. Nature 461:716–718

    Article  CAS  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Garnett T (2014) Food security and sustainable intensification. Phil Trans R Soc B 369:20120273. doi:org/10.1098/rstb.2012.0273

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Goto BT, Silva GA, Assis DMA, Silva DKA, Souza RG, Ferreira ACA, Jobim K, Mello CMA, Vieira HEE, Maia LC, Oehl F (2012a) Intraornatosporaceae (Gigasporales), a new family with two new genera and two new species. Mycotaxon 119:117–132

    Article  Google Scholar 

  • Goto BT, Jardim JG, Silva GA, Furrazola E, Torres-Arias Y, Oehl F (2012b) Glomus trufemii (glomeromycetes), a new sporocarpic species from Brazilian sand dunes. Mycotaxon 120:1–9

    Article  Google Scholar 

  • Grattan SR, Grieve CM (1998) Salinity–mineral nutrient relations in horticultural crops. Sci Horticult 78:127–157

    Article  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS (2010) Acidification in major Chinese croplands. Science 327(5968):1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Zhao RX, Zhao WJ, Fu RY, Guo JY, Bi N, Jun ZJ (2013) Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings. Appl Soil Ecol 72:85–92

    Article  Google Scholar 

  • Gutjahr C (2014) Phytohormone signaling in arbuscular mycorrhiza development. Curr Opin Plant Biol 20:26–34

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R (2013) Role of arbuscular mycorrhiza in amelioration of salinity. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signalling, omics and adaptations. Springer Science and Business Media, New York, pp 301–354

    Chapter  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 2. Springer, New York, pp 139–159

    Chapter  Google Scholar 

  • Hammond JP, White PJ (2011) Sugar signaling in root responses to low phosphorus availability. Plant Physiol 156:1033–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (2012) Cellular programs for arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 15:691–698

    Article  CAS  PubMed  Google Scholar 

  • Hart MM, Forsythe JA (2012) Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci Hortic 148:206–214

    Article  CAS  Google Scholar 

  • Hashem A, Abd-Allah EF, Ahmad P (2015) Effect of AM fungi on growth, physio-biochemical attributes, lipid peroxidation, antioxidant enzymes and plant growth regulators in Lycopersicon esculentum mill. subjected to different concentration of NaCl. Pak J Bot 47:327–340

    Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi A A, Al-Huqail A A, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbio 7:1089. doi.org/10.3389/fmicb.2016.01089

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Hazzoumi Z, Moustakime Y, Elharchli E, Amrani Joutei K (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem Biol Tech Agric 2:10. doi:10.1186/s40538-015-0035-3

    Article  Google Scholar 

  • Hiiesalu I, Opik M, Metsis M, Lilje L, Davison J, Vasar M, Moora M, Zobel M, Wilson SD, Partel M (2012) Plant species richness belowground: higher richness and new patterns revealed by next-generation sequencing. Mol Ecol 21:2004–2016

    Article  CAS  PubMed  Google Scholar 

  • Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, Öpik M, Vasar M, Zobel M, Wilson SD (2014) Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol 203:233–244

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvarb M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D (2011) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespin M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:11. doi:10.1186/1939-8433-5-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Horst WJ (1988) The physiology of manganese toxicity. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 175–188

    Chapter  Google Scholar 

  • Hossain Z, Khatoon A, Komatsu S (2013) Soybean proteomics for unraveling abiotic stress response mechanism. J Proteome Res 12:4670–4684

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Schmidhalter U (2002) Limitation of salt stress to plant growth. In: Hock B, Elstner CF (eds) Plant toxicology. Marcel Dekker, New York, pp 91–224

    Google Scholar 

  • Hua J, Lin X, Yin R, Jiang Q, Shao Y (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.) J Environ Sci 21:1214–1220

    Article  CAS  Google Scholar 

  • Huang Z, Zou Z, He C, He Z, Zhang Z, Li J (2011) Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant Soil 339:391–399

    Article  CAS  Google Scholar 

  • Inostroza-Blancheteau C, Rengel Z, Alberdi M, de la Luz MM, Aquea F, Arce-Johnson P, Reyes-Díaz M (2012) Molecular and physiological strategies to increase aluminum resistance in plants. Mol Biol Rep 39:2069–2079

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29

    Chapter  Google Scholar 

  • Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Jany JL, Pawlowska TE (2010) Multinucleate spores contribute to evolutionary longevity of asexual Glomeromycota. Am Nat 175:424–435

    Article  PubMed  Google Scholar 

  • Jardin PD (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14

    Article  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162

    Chapter  Google Scholar 

  • Johansson J, Paul L, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–12

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  PubMed  Google Scholar 

  • Johnson SE, Loeppert RH (2006) Role of organic acids in phosphate mobilization from iron oxide. Soil Sci Soc Am J70:222–234

    Article  CAS  Google Scholar 

  • Jung SC, Medina-Matinez A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular–arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57

    Article  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer, LLC, pp 359–401

    Chapter  Google Scholar 

  • Keightley JA, Li S, Kinters M (2004) Proteomic analysis of oxidative stress-resistance cells. Mol Cell Proteomics 3:167–175

    Article  CAS  PubMed  Google Scholar 

  • Kenrick P, Strullu-Derrien C (2014) The origin and early evolution of roots. Plant Physiol 166:570–580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation—an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Kieffer P, Dommes J, Hoffman L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530. doi:10.1002/pmic.200701110

    Article  CAS  PubMed  Google Scholar 

  • Kochian L, Hoekenga O, Piñeros M (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598

    Article  CAS  PubMed  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991) Effect of a vesicular arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.) New Phytol 117:649–655

    Article  CAS  Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  CAS  Google Scholar 

  • Kuhn H, Kúster H, Requena N (2010) Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol 185:716–733

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dames JF, Gupta A, Sharma S, Gilbert JA, Ahmad P (2015) Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Crit Rev Biotechnol 35:461–474

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Lee EH, Eo JK, Ka KH, Eom AH (2013) Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41:121–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefebvre DD, Duff SM, Fife CA, Julien-Inalsingh C, Plaxton WC (1990) Response to phosphate deprivation on Brassica nigra suspension cells. Plant Physiol 85:315–317

    Google Scholar 

  • Lenoir I, Fontaine J, Lounès-Hadj Sahraoui A (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    Article  CAS  PubMed  Google Scholar 

  • Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran RG, Wenzel WW, Lombi E (eds) Trace metals in the rhizosphere. CRC Press, Boca Raton, pp 165–185

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function, physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD (2013a) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630

    Article  CAS  PubMed  Google Scholar 

  • Li T, Hu Y-J, Hao Z-P, Li H, Chen B-D (2013b) Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance. Plant Signal Behav 8:e24030. doi:10.4161/psb.24030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin YF, Aarts MGM (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Lioussanne L (2010) Review. The role of the arbuscular mycorrhiza–associated rhizobacteria in the biocontrol of soilborne phytopathogens. Span J Agric Res 8:S51–S61

    Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant-Microbe Interact 11:14–22

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Versaw WK, Pumplin N, Gomez SK, Blaylock LA, Harrison MJ (2008) Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J Biol Chem 283:24673–24681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  PubMed  CAS  Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ludwig-Müller J (2010) Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 169–190

    Chapter  Google Scholar 

  • Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    Article  PubMed  CAS  Google Scholar 

  • Ludwig-Müller J, Güther M (2007) Auxins as signals in arbuscular mycorrhiza formation. Plant Signal Behav 2:194–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch JP, StClair SB (2004) Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res 90:101–115

    Article  Google Scholar 

  • Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe–metal interactions: relevance for phytoremediation. Front Plant Sci 7:918. doi:org/10.3389/fpls.2016.00918

    Google Scholar 

  • Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258

    Article  CAS  PubMed  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  PubMed  Google Scholar 

  • Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation. Plant Biosyst 145:88–97

    Article  Google Scholar 

  • Margulis L, Dolan MF, Guerrero R (2000) The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc Natl Acad Sci U S A 97:6954–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulis L, Chapman M, Guerrero R, Hall J (2006) The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic eon. Proc Natl Acad Sci U S A 103:13080–13085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marscher H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H, Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic Press, New York

    Google Scholar 

  • Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, Sanders IR, Shachar-Hill Y, Shapiro H, Tuskan GA, Young JPW (2008) The long hard road to a completed Glomus intraradices genome. New Phytol 180:747–750

    Article  CAS  PubMed  Google Scholar 

  • Martín-Rodríguez JA, León-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Müller J, García-Garrido JM (2011) Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytol 190:193–205

    Article  PubMed  CAS  Google Scholar 

  • Martín-Rodríguez JA, Ocampo JA, Molinero-Rosales N, Tarkowská D, Ruíz-Rivero O, García-Garrido JM (2015) Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiol Plantarum 154:66–81

    Article  CAS  Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147

    Chapter  Google Scholar 

  • Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013a) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45:6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013b) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8:931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44:143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557

    Article  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016a) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20

    Chapter  Google Scholar 

  • Meier S, Azcón R, Cartes P, Borie F, Cornejo P (2011) Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowasted residue. Appl Soil Ecol 48:117–124

    Article  Google Scholar 

  • Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:476–494

    Article  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Rev Plant Biol 12:563–569

    CAS  Google Scholar 

  • Miransari M (2011) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875–885

    Article  CAS  PubMed  Google Scholar 

  • Moe AL (2013) Amino acids in the rhizosphere: from plants to microbes. Am J Bot 100:1692–1705

    Article  CAS  PubMed  Google Scholar 

  • Moonen AC, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agricul Ecosys Environ 127:7–21

    Article  Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol 35:299–319

    Article  Google Scholar 

  • Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20:483–496

    Article  PubMed  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303. doi:10.3389/fpls.2016.00303

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Muthukumar T, Priyadharsini P, Uma E, Jaison S, Pandey RR (2014) Role of arbuscular mycorrhizal fungi in alleviation of acidity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 43–71

    Chapter  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus repressible and transcriptionally regulated. New Phytol 181:950–959

    Article  CAS  PubMed  Google Scholar 

  • Narula N, Tlustos P, Szaková J (2010) Plant–microbe interaction in heavy metal contaminated soils. In: Kothe E, Varma A (eds) Bio–geo interactions in metal-contaminated soils. Springer, Berlin/Heidelberg, pp 143–162

    Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorous availability: a review. Ann Bot 112:391–408

    Article  CAS  PubMed  Google Scholar 

  • Nogueira MA, Cardoso EJBN (2003) Mycorrhizal effectiveness and manganese toxicity in soybean as affected by soil type and endophyte. Sci Agric 60:329–335

    Article  CAS  Google Scholar 

  • Nogueira MA, Cardoso EJBN, Hampp R (2002) Manganese toxicity and callose deposition in leaves are attenuated in mycorrhizal soybean. Plant Soil 246:1–10

    Article  CAS  Google Scholar 

  • Nogueira MA, Nehls U, Hampp R, Poralla K, Cardoso EJBN (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284. doi:10.1007/s11104-007-9379-1

    Article  CAS  Google Scholar 

  • Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9:e90841. doi:10.1371/journal.pone.0090841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oburger E, Hannes Schmid H (2016) New methods to unravel rhizosphere processes. Trends Plant Sci 21:243–255

    Article  CAS  PubMed  Google Scholar 

  • OECD/FAO (2012) OECD-FAO agricultural outlook 2012–2021. OECD Publishing and FAO. Available: http://dx.doi.org/10.1787/agr_outlook-2012-en

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, Silva GA (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Sánchez-Castro I, Palenzuela J, Silva GA (2014) Palaeospora spainii, a new arbuscular mycorrhizal fungus from Swiss agricultural soils. Nova Hedwigia 101:1–2

    Google Scholar 

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  CAS  Google Scholar 

  • Orłowska E, Przybyłowicz W, Orlowski D, Mongwaketsi NP, Turnau K, Mesjasz-Przybyłowicz J (2013) Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler. Environ Pollut 175:100–109

    Article  PubMed  CAS  Google Scholar 

  • Pagano MC (2014) Drought stress and mycorrhizal plants. In: Miransai M (ed) Use of microbes for the alleviation of soil stress. Springer, New York, pp 97–110

    Chapter  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agriculture for Sustainable Development 2(2):101–116

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2008) Plant genetics. The blue revolution, drop by drop, gene by gene. Science 320:171–173

    Article  CAS  PubMed  Google Scholar 

  • Pichardo ST, Su Y, Han FX (2012) The potential effects of arbuscular mycorrhizae (AM) on the uptake of heavy metals by plants from contaminated soils. J Bioremed Biodegr 3:e124. doi:10.4172/2155-6199.1000e124

    Article  Google Scholar 

  • Pieterse CMJ, Zamoudis C, Berendsen RL, Weller DM, Van Wees CMS, Bakker AHMP (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Plassard C, Fransson P (2009) Regulation of low-molecular weight organic acid production in fungi. Fungal Biol Rev 23:30–39

    Article  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sust Devel 32:181–200

    Article  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2009) Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32:158–169

    Article  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defences against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impact. Springer, Heidelberg, pp 137–149

    Google Scholar 

  • Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.) Biol Fertil Soils 47:853–861

    Article  CAS  Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond Ser B Biol Sci 363:447–466

    Article  Google Scholar 

  • Pretty J (2013) The consumption of a finite planet: well-being, convergence, divergence and the nascent green economy. Environ Res Econ 55:475–499

    Article  Google Scholar 

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114:1571–1596

    Article  PubMed  PubMed Central  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.) PLoS One 9(12):e111152. doi:10.1371/ journal.pone.0111152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African J Biotech 4:210–222

    CAS  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59

    Chapter  Google Scholar 

  • Raja N (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestici 4:e112. doi:10.4172/2155-

    Article  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Ramos AC, Façanha AR, Palma LM, Okorokov LA, Cruz ZMA, Silva AG, Siqueira AF, Bertolazi AA, Canton GC, Melo J, Santos WO, Schimitberger VMB, Okorokova-Façanha AL (2011) An outlook on ion signaling and ionome of mycorrhizal symbiosis. Braz J Plant Physiol 23:79–89

    Article  CAS  Google Scholar 

  • Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, Springer science, vol 1. Business Media, New York, pp 21–42

    Chapter  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Redecker D, Schubler A (2014) Glomeromycota. In: McLaughlin DJ, Spatafora JW (eds) The mycota VII part A—systematics and evolution, 2nd edn. Springer, Berlin/Heidelberg, pp 252–270

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000b) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Regvar M, Vogel-Mikuš K (2008) Arbuscular mycorrhiza in metal hyperaccumulating plants. In: Varma A (ed) Mycorrhiza. Springer-Verlag, Berlin, Heidelberg, pp 261–280

    Chapter  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengel Z (2015) Availability of Mn, Zn and Fe in the rhizosphere. J Soil Sci Plant Nutr 15:397–409

    CAS  Google Scholar 

  • Rivera-Becerril F, Metwally A, Martin-Laurent F, Van Tuinen D, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular responses to cadmium in roots of Pisum sativum L. Water Air Soil Pollution 168:171–186

    Article  CAS  Google Scholar 

  • Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A (2009) Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Sci 14:542–549

    Article  CAS  PubMed  Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Ruíz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies Mycorrhiza 13:309–317

    PubMed  Google Scholar 

  • Ruíz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  Google Scholar 

  • Ruíz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:695–709

    Article  CAS  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na(+) entry into plant roots. Proc Natl Acad Sci U S A 98:14150–14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Saia S, Amato G, Frenda AS, Giambalvo D, Ruisi P (2014) Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress. PLoS One 9:e90738. doi:10.1371/journal.pone.0090738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Romera B, Ruíz-Lozano JM, Zamarreño ÁM, García-Mina JM, Aroca R (2015) Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza 26:111–122

    Article  PubMed  CAS  Google Scholar 

  • Sanders IR, Croll D (2010) Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. Annu Rev Genet 44:271–292

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Meena VS, Haldar A, Rakshit R (2017) Site-specific nutrient management (SSNM): a unique approach towards maintaining soil health. In: Rakshit A, Abhilash PC, Singh HB, Ghosh S (eds) Adaptive soil management: from theory to practices, pp 69–88. doi:10.1007/978-981-10-3638-5_3

    Chapter  Google Scholar 

  • Sarwat M, Hashem A, Ahanger M A, Abd-Allah E F, Alqarawi A A, Alyemeni MN, Ahmad P, Gucel S (2016) Mitigation of NaCl stress by arbuscular mycorrhizal fungi through the modulation of osmolytes, antioxidants and secondary metabolites in mustard (Brassica juncea L.) Plants. Front Plant Sci 7:869. doi:org/10.3389/fpls.2016.00869

  • Sato A, Miura K (2011) Root architecture remodeling induced by phosphate starvation. Plant Sign Behav 6:1122–1126

    Article  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  CAS  PubMed  Google Scholar 

  • Schubler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Published in libraries at the Royal Botanic Garden Edinburgh, the Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Electronic version freely available online at. http://www.amf-phylogeny.com. Accessed 22 Aug 2016

  • Schubler A, Walker C (2011) Evolution of the ‘plant symbiotic’ fungal phylum, Glomeromycota. In:Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms. The mycota XIV, Springer, Berlin/Heidelberg, pp 163–185

    Google Scholar 

  • Senbayram M, Chen R, Budai A, Bakken LR, Dittert K (2012) N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric Ecosyst Environ 147:4–12

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219

    Chapter  Google Scholar 

  • Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123. http://doi.org/10.3389/fpls.2013.00123

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296.

    Google Scholar 

  • Shorette K (2012) Outcomes of global environmentalism: longitudinal and crossnational trends in chemical fertilizer and pesticide use. Soc Forces 91:299–325

    Article  Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185

    Chapter  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmaco 43:246–253

    Article  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28:86–99

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134

    Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosytems scales. Ann Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza LA, Piotto FA, Nogueira RC, Azevedo RA (2013) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci Agric 70:290–295

    Article  CAS  Google Scholar 

  • Sudhakaran S, Lattemann S, Amy GL (2013) Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model studies—a multi-criteria analysis study. Sci Total Environ 442:478–488

    Article  CAS  PubMed  Google Scholar 

  • Sun Y-P, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation–reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza 9:137–144

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:2–3

    Article  CAS  Google Scholar 

  • Svistoonoff S, Benabdoun FM, Nambiar-Veetil M, Imanishi L, Vaissayre V, Cesari S, Diagne N, Hocher V, de Billy F, Bonneau J, Wall L, Ykhlef N, Rosenberg C, Bogusz D, Franche C, Gherbi H (2013) The independent acquisition of plant root nitrogen-fixing symbiosis in fabids recruited the same genetic pathway for nodule organogenesis. PLoS One 8:e64515. doi:10.1371/journal.pone.0064515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajini F, Trabelsi M, Drevona JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.) Saudi J Biol Sci 19:157–163

    Google Scholar 

  • Tavakkoli E, Rengasamy P, Mcdonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665

    Article  CAS  Google Scholar 

  • Taylor LL, Banwart SA, Valdes PJ, Leake JR, Beerling DJ (2012) Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach. Philos Trans R Soc Lond Ser B Biol Sci 367:565–582

    Article  CAS  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity—present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325

    Chapter  Google Scholar 

  • Thomas GW, Hargrove WL (1984) The chemistry of soil acidity. In: Adams F (ed) Soil acidity and liming. Agronomy 12, 2nd edn. American Society of Agronomy, Madison, pp 1–58

    Google Scholar 

  • Tian D, Niu S (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:1–10

    Article  CAS  Google Scholar 

  • Tian Q, Zhang X, Gao Y, Bai W, Ge F, Ma Y, Zhang W-H (2013) Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils. Ecol Evol 3:1440–1448

    Article  PubMed  PubMed Central  Google Scholar 

  • Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kănnaste A, Behers L, Nevo E, Seisenbaeva G (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):e96086. doi:10.1371/journal.pone.0096086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, van Tuinen D, Bécard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan G, Young JP, Young PW, Sanders IR, Henrissat B, Rensing S, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Torres-Vera R, Garcia JM, Pozo MJ, López-Ráez JA (2014) Do strigolactones contribute to plant defence? Mol Plant Pathol 15:211–216

    Article  CAS  PubMed  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Ullrich-Eberius C, Novacky A, van Bel A (1984) Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta 161:46–52

    Article  CAS  PubMed  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van Wees SCM, van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84:914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P (2017a) Microbial dynamics as influenced by bio-organics and mineral fertilizer in alluvium soil of Varanasi. India Int J Curr Microbiol App Sci 6(2):1516–1524

    Article  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P, Jajoria M (2017b) Enhancing production potential of cabbage and improves soil fertility status of Indo-Gangetic Plain through application of bio-organics and mineral fertilizer. Int J Curr Microbiol App Sci 6(3):301–309

    Google Scholar 

  • Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14:240–245

    Article  CAS  PubMed  Google Scholar 

  • Vicente-Serrano SM, Lopez-Moreno J-I, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García-Ruiz JM, Azorin-Molina C, Morán-Tejeda E, Revuelto J, Trigo R (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:044001. doi:10.1088/1748-9326/9/4/044001

    Article  Google Scholar 

  • Viehweger K (2014) “How plants cope with heavy metals” Bot Studies 55:1–12.

    Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Article  PubMed  CAS  Google Scholar 

  • Walder F, Boller T, Wiemken A, Courty PE (2016) Regulation of plants’ phosphate uptake in common mycorrhizal networks: role of intraradical fungal phosphate transporters. Plant Signal Behav. doi.org/10.1080/15592324.2015.1131372

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Vestberg M, Walker C, Hurme T, Zhang X, Lindström K (2008) Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18:59–68

    Article  PubMed  Google Scholar 

  • Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B (2012) A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol 22:2242–2246

    Article  CAS  PubMed  Google Scholar 

  • Ward B, Dubos R (1972) The care and maintenance of a small planet. Penguin, Harmondsworth

    Google Scholar 

  • Wasternack C, Forner S, Strnad M, Hause B (2013) Jasmonates in flower and seed development. Biochimie 95:79–85

    Article  CAS  PubMed  Google Scholar 

  • Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M (2015) Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. J Exp Bot 66:4061–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy-metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251

    CAS  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1561

    Article  PubMed  Google Scholar 

  • Williamson LC, Ribrioux S, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QS, Li GH, Zou YN (2011) Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. batsch) seedlings. J Anim Plant Sci 21:746–750

    CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. doi:10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul 33:612–625

    Article  CAS  Google Scholar 

  • Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348

    Article  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. doi:10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Yinsuo J, Vincent MG, Colin JS (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258

    Article  CAS  Google Scholar 

  • Yooyongwech S, Phaukinsang N, Cha-Um S, Supaibulwatana K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285–293

    Article  CAS  Google Scholar 

  • Yousif BS, Nguyen NT, Fukuda Y, Hakata H, Okamoto Y, Masaoka Y, Saneoka H (2010) Effect of salinity on growth, mineral composition, photosynthesis and water relations of two vegetable crops; New Zealand spinach (Tetragonia tetragonioides) and water spinach (Ipomoea aquatica). Int J Agric Biol 12:211–216

    CAS  Google Scholar 

  • Yu N, Luo D, Zhang X, Liu J, Wang W, Jin Y, Wang E (2014) A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res 24:130–133

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Hahn Y, Yang I (2015) Reference materials for calibration of analytical biases in quantification of DNA methylation. PLoS One 10(9):e0137006. doi:10.1371/journal.pone.0137006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. doi:10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zakhleniuk OV, Raines CA, Lloyd JC (2001) pho3: a phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh. Planta 212:529–534

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yao Q, Li J, Wang Y, Liu X, Hu Y, Chen J (2015) Contributions of an arbuscular mycorrhizal fungus to growth and physiology of loquat (Eriobotrya Japonica) plants subjected to drought stress. Mycol Progress 14:84–94

    Article  Google Scholar 

  • Zuccarini P (2007) Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ 53:283–289

    CAS  Google Scholar 

  • Zuccaro A, Lahrmann U, Langen G (2014) Broad compatibility in fungal root symbioses. Curr Opin Plant Biol 20:135–145

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the editors and anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Alves Cardoso Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Filho, J.A.C., Sobrinho, R.R., Pascholati, S.F. (2017). Arbuscular Mycorrhizal Symbiosis and Its Role in Plant Nutrition in Sustainable Agriculture. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5343-6_5

Download citation

Publish with us

Policies and ethics