Skip to main content

Biological Nitrogen Fixation for Sustainable Agriculture

  • Chapter
  • First Online:

Abstract

Worldwide the increasing use of inorganic nitrogenous fertilizer becomes a threat to the environment and consequently to the mankind. It is high time to think about the alternate nitrogenous source for assuring sustainable agriculture. Biological nitrogen fixation (BNF), involving beneficial microorganism, is a process of converting the free atmospheric nitrogen into plant available form. This biological process harmonizes the ecosystem and offers an economic and environment-friendly approach for reducing the external inputs and improving internal sources. In nature a symbiotic relationship exists between most of the agriculturally important leguminous plants and beneficial microorganism, where bacteria can fix atmospheric free N2 and provide it to the plant in available form in exchange of nutrition and shelter. These rhizobia (bacteria) dwell in the nodule present in the roots of leguminous plants. This type of symbiosis also exists between free-living microorganisms, viz., Azolla and Anabaena, and with rice plants in anaerobic condition. Therefore, BNF is considered as an important biological process for harnessing soil health as well as for assuring economic, environmental, and agronomic benefit. However, the necessity of inclusion of leguminous crop in the cropping system due to BNF concern is not getting popularize among the farming community particularly to the marginal and low-income group farmer due to lack of availability of specific rhizobia strain for specific crop, as well as socioecomic constraints. The present book chapter is focusing on the importance of BNF in agricultural system and the effectiveness of various legume species and their beneficial microsymbiont. The genetics, biochemistry behind the BNF, and the probable strategy for improving the N2 fixation process are also getting concern for understanding these important biological phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. doi:10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Allen RM, Chatterjee R, Ludden PW, Shah VK (1995) Incorporation of iron and sulfur from NifB cofactor into the iron-molybdenum cofactor of dinitrogenase. J Biol Chem 270:26890–26896

    Article  CAS  PubMed  Google Scholar 

  • Al-Mallah MK, Davey MR, Cocking EC (1989) A new approach to the nodulation of non-legumes by rhizobia and the transformation of cereals by agrobacteria using enzymatic treatment of root hairs. Intern J Gen Manip Plants 5:1–7

    Google Scholar 

  • Alvarez-Morales A, Dixon R, Merrick M (1984) Positive and negative control of the glnA ntrBC regulon in Klebsiella pneumoniae. EMBO J 3(3):501–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anglade J, Billen G, Garnier J (2015) Relationships for estimating N2 fixation in legumes: incidence for N balance of legume-based cropping systems in Europe. Ecosphere 6(3):37

    Article  Google Scholar 

  • Ardourel M, Demont N, Debellé F, Maillet F, de Billy F, Promé JC, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6(10):1357–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attallah AG, Abd-El-Aal SKH (2007) Interspecific protoplast fusion between Streptococcus lactis strains. Res J Agric Biol Sci 3(6):572–576

    CAS  Google Scholar 

  • Ausubel FM (1982) Molecular genetics of symbiotic nitrogen fixation. Cell 29(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. doi:10.1007/978-81-322-2776-2_18

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2017) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fert Soils 30:485–491

    Article  Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24

    Article  CAS  Google Scholar 

  • Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. Ecological studies. In: Belnap J, Lange OI (eds) Biological soil crusts: structure, function, and management. Springer-Verlag, Berlin/Heidelberg, p 247

    Google Scholar 

  • Bender GL, Nayudu M, Le Strange KK, Rolfe BG (1988) The nodD1 gene from Rhizobium strain NGR234 is a key determinant in the extension of host range to the non-legume Parasponia. Mol Plant-Microbe Interact 1:259–266

    Article  Google Scholar 

  • Berck S, Perret X, Quesada-Vincens D, Promé JC, Broughton WJ, Jabbouri S (1999) NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity. J Bacteriol 181(3):957–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergersen FJ (1971) Biochemistry of symbiotic nitrogen fixation in legumes. Annu Rev Plant Physiol 22:121–140

    Article  CAS  Google Scholar 

  • Beringer JE, Hirsch PR (1984) Genetic engineering and nitrogen fixation. Biotechnol Genet Eng Rev 1:65–88

    Article  CAS  Google Scholar 

  • Better M, Lewis B, Corbin D, Ditta G, Helinski DR (1983) Structural relationships among Rhizobium meliloti symbiotic promoters. Cell 35(2):479–485

    Article  CAS  PubMed  Google Scholar 

  • Betts JH, Herridge DF (1987) Isolation of soybean lines capable of nodulation and nitrogen fixation under high levels of nitrate supply. Crop Sci 27(6):1156–1161

    Article  Google Scholar 

  • Beynon JL, Beringer JE, Johnston AWB (1980) Plasmids and host-range in Rhizobium leguminosarum and Rhizobium phaseoli. J Gen Microbiol 120(2):421–429

    Google Scholar 

  • Beynon J, Cannon M, Bucwnan-wollaston V, Cannon FC (1983) The nif promoters of Klebsiella pneumoniae have a characteristic primary structure. Cell 34:665–671

    Article  CAS  PubMed  Google Scholar 

  • Birkenhead K, Manian SS, O'Gara F (1988) Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation. J Bacteriol 170(1):184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in Cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewin NJ (1991) Development of the legume root nodule. Annu Rev Cell Biol 7(1):191–226

    Article  CAS  PubMed  Google Scholar 

  • Brewin NJ (2002) Pods and nods: a new look at symbiotic nitrogen fixation. Biologist 49:1–5

    Google Scholar 

  • Brill WJ (1980) Biochemical genetics of nitrogen fixation. Microbiol Rev 44(3):449–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. In: Management of biological nitrogen fixation for the development of more productive and sustainable agricultural systems. Springer, Dordrecht, pp 143–180

    Chapter  Google Scholar 

  • Broughton WJ, Perret X (1999) Genealogy of legume-rhizobium symbioses. Curr Opin Plant Biol 2(4):305–311

    Article  CAS  PubMed  Google Scholar 

  • Bruijn FJ (2015) In: de Bruijn FJ (ed) Biological nitrogen fixation, vol 1. Wiley Blackwell/Wiley & Sons, Inc., Hoboken

    Chapter  Google Scholar 

  • Buck M (1986) Deletion analysis of the Klebsiella pneumoniae nitrogenase promoter: importance of spacing between conserved sequences around positions-12 and -24 for activation by the nifA and ntrC (glnG) products. J Bacteriol 166:545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck M, Cannon W (1989) Mutations in the RNA polymerase recognition sequence of the Klebsiella pneumoniae nifH promoter permitting transcriptional activation in the absence of NifA binding to upstream sequences. Nucleic Acids Res 17:2597–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buikema WJ, Szeto WW, Lemley PV, Orme-Johnson WH, Ausubel FM (1985) Nitrogen fixation specific regulatory genes of Klebsiella pneumoniae and Rhizobium meliloti share homology with the general nitrogen regulatory gene ntrC of K. pneumoniae. Nucleic Acids Res 13:4539–4555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burris RH (1991) Nitrogenase. J Biol Chem 266:9339–9342

    CAS  PubMed  Google Scholar 

  • Burris RH (2004) Nitrogen fixation. Encycl Life Sci. Wiley-Blackwell. doi: 10.1038/npg.els.0000626

  • Burris RH, Roberts GP (1993) Biological nitrogen fixation. Annu Rev Nutr 13(1):317–335

    Article  CAS  PubMed  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985) Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Nat Acad Sci 82(12):4162–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo M, Flores M, Mavingui P, Martínez-Romero E, Palacios R, Hernández G (1999) Increase in alfalfa nodulation, nitrogen fixation, and plant growth by specific DNA amplification in Sinorhizobium meliloti. Appl Environ Microbiol 65(6):2716–2722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q (2008) Perspectives in biological nitrogen fixation research. J Integr Plant Biol 50(7):786–798

    Article  CAS  PubMed  Google Scholar 

  • Christiansen J, Dean DR, Seefeldt LC (2001) Mechanistic features of the Mo-containing nitrogenase. Annu Rev Plant Physiol Plant Mol Biol 52:269–295

    Article  CAS  PubMed  Google Scholar 

  • Clawson ML, Carú M, Benson DR (1998) Diversity of Frankia strains in root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl Environ Microbiol 64(9):3539–3543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clawson ML, Bourret A, Benson DR (2004) Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogen Evol 31(1):131–138

    Article  CAS  Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252(1):169–175

    Article  CAS  Google Scholar 

  • Cocking EC (2009) The challenge of establishing symbiotic nitrogen fixation in cereals. In: Emerich DW, Krishnan HB (eds) Nitrogen fixation in crop production, agronomy monograph, 52 American societies of agronomy. Crop and Soil Sciences, Madison, pp 35–65

    Google Scholar 

  • Corvera A, Promé D, Promé JC, Martínez-Romero E, Romero D (1999) The nolL gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in the nodulation factor. Mol Plant-Microbe Interact 12(3):236–246

    Article  CAS  PubMed  Google Scholar 

  • Dadarwal KR, Sindhu SS, Batra R (1985) Ecology of Hup+ Rhizobium strains of cow pea miscellany: native frequency and competence. Arch Microbiol 141(3):255–259

    Article  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. doi:10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of Nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834

    Google Scholar 

  • Debellé F, Maillet F, Vasse J, Rosenberg C, De Billy F, Truchet G, Michiels FM (1988) Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: genetic basis of R. meliloti dominance. J Bacteriol 170(12):5718–5727

    Article  PubMed  PubMed Central  Google Scholar 

  • Dénarié J, Debelle F, Rosenberg C (1992) Signaling and host range variation in nodulation. Annu Rev Microbiol 46(1):497–531

    Article  PubMed  Google Scholar 

  • Devine TE, Kuykendall LD (1996) Host genetic control of symbiosis in soybean (Glycine max L.) Plant Soil 186(1):173–187

    Article  CAS  Google Scholar 

  • Dilworth MJ (1974) Dinitrogen fixation. Annu rev Plant Physiol 25:81

    Article  CAS  Google Scholar 

  • Dixon RA (1984) The genetic complexity of nitrogen fixation. J Gen Microbiol 130:2745–2755

    CAS  PubMed  Google Scholar 

  • Dixon R (1998) The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in γ-Proteobacteria. Arch Microbiol 169:371–380

    Article  CAS  PubMed  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nature Rev Microbiol 2(8):621–631

    Article  CAS  Google Scholar 

  • Dixon RA, Postgate JR (1971) Transfer of nitrogen-fixation genes by conjugation in Klebsiella pneumoniae. Nature 234:47–48

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Cannon F, Kondorosi A (1976) Construction of P plasmid carrying nitrogen fixation genes from Klebsiella pneumoniae. Nature 260:268–271

    Article  CAS  PubMed  Google Scholar 

  • Dixon R, Cheng Q, Dowson-Day M, Day A (2000) Prospects for engineering nitrogen-fixing photosynthetic eukaryotes. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer Academic Publishers, Dordrecht, pp 635–639

    Google Scholar 

  • Dobbelaere S, Croomenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Landera-Gonzalez C, Caballero-Mellado J, Aguire JF, Kapulnik Y, Brener S, Burdman S, Dadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Döbereiner J (1988) Isolation and identification of root associated diazotrophs. Plant Soil 110(2):207–212

    Article  Google Scholar 

  • Döbereiner J, Reis VM, Paula MA, Olivares F (1993) Endophytic diazotrophs in sugarcane, cereals and tuber plants. In: Palacios R et al (eds) New horizons in nitrogen fixation. Kluwer Academic Publishers, Dordrecht, pp 617–676

    Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. doi:10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dos Santos PC, Dean DR, Hu YL, Ribbe MW (2004) Formation and insertion of nitrogenase iron-molybdenum cofactor. Chem Rev 104:1159–1173

    Article  CAS  PubMed  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. doi:10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • Downie JA (2005) Legume haemoglobins: symbiotic nitrogen fixation needs bloody nodules. Curr Biol 15(6):196–198

    Article  CAS  Google Scholar 

  • Drummond MH, Wootton JC (1987) Sequence of nifL from Klebsiella pneumoniae: mode of action and relationship to two families of regulatory proteins. Mol Microbiol 1:37–44

    Article  CAS  PubMed  Google Scholar 

  • Drummond MH, Clements J, Merrick M, Dixon R (1983) Positive control and autogenous regulation of the nifLA promoter in Klebsiella pneumoniae. Nature 301:302–307

    Article  CAS  PubMed  Google Scholar 

  • Eady RR, Issack R, Kennedy C, Postgate JR, Ratcliffe HD (1978) Nitrogenase synthesis in Klebsiella pneumoniae: comparison of ammonium and oxygen regulation. J Gen Microbiol 104:277–285

    Article  CAS  PubMed  Google Scholar 

  • Elkan GH (1992) Taxonomy of the rhizobia. Can J Microbiol 38:446–450

    Article  Google Scholar 

  • Emerich DW, Burris RH (1978) Complementary functioning of the component proteins of nitrogenase from several bacteria. J Bacteriol 134:936–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emerich DW, Ruiz-Argüeso T, Evans HJ (1979) Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J Bacteriol 137(1):153–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2011) Current world fertilizer trends and outlook to 2015. Food and agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Faucher C, Maillet F, Vasse J, Rosenberg C, Van Brussel AA, Truchet G, Dénarié J (1988) Rhizobium meliloti host range nodH gene determines production of an alfalfa-specific extracellular signal. J Bacteriol 170(12):5489–5499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58(3):352–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 32:35–59

    Article  CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153

    Article  CAS  Google Scholar 

  • Gavini N, Pulukat L (2002) Role of NifM in maturation of the Fe protein of nitrogenase. In: Finan T, O’Brian M, Layzell D, Vessey K, Newton B (eds) Nitrogen fixation: global perspectives. Wallingford, CABI International, pp 228–232

    Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (1999) Bacteriocin-producing native rhizobia of green gram (Vigna radiata) having competitive advantage in nodule occupancy. Microbiol Res 154(1):43–48

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2000) Pigment diverse mutants of Pseudomonas sp.: inhibition of fungal growth and stimulation of growth of Cicer arietinum. Biol Plant 43:563–569

    Article  CAS  Google Scholar 

  • Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152:1–17

    Article  Google Scholar 

  • Hardy RWF, Havelka UD (1975) Nitrogen fixation research: a key to world food? Science 188(4188):633–643

    Article  CAS  PubMed  Google Scholar 

  • Harriott OT, Khairallah L, Benson DR (1991) Isolation and structure of the lipid envelopes from the nitrogen-fixing vesicles of Frankia sp. strain Cpl1. J Bacteriol 173:2061–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haselkorn R, Buikema WJ (1997) Heterocyst differentiation and nitrogen fixation in cyanobacteria. In: Biological fixation of nitrogen for ecology and sustainable agriculture. Springer, Berlin/Heidelberg, pp 163–166

    Chapter  Google Scholar 

  • Hegazi NA, Amer HA, Monib M (1979) Enumeration of N2-fixing spirilla. Soil Biol Biochem 11(4):437–438

    Article  Google Scholar 

  • Hennecke H, Shanmugam KT (1979) Temperature control of nitrogen fixation in Klebsiella pneumoniae. Arch Microbiol 123(3):259–265

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann-Findeklee C, Gadkari D, Meyer O (2000) Superoxide dependent nitrogen fixation. In: Pedrosa FO, Hungaria M, Yates MG (eds) Nitrogen fixation: from molecules to crop productivity, Kluwer. WE Newton, Boston, pp 23–30

    Google Scholar 

  • Homer MJ, Paustian TD, Shah VK, Roberts GP (1993) The nifY product of Klebsiella pneumoniae is associated with apodinitrogenase and dissociates upon activation with the iron molybdenum cofactor. J Bacteriol 175:4907–4910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoover TR, Robertson AD, Cerny RL, Hayes RN, Imperial J, Shah VK (1987) Identification of the V factor needed for synthesis of the iron-molybdenum cofactor of nitrogenase as homocitrate. Nature 329:855–857

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss RD, Gabor MH (1980) Biparental products of bacterial protoplast fusion showing unequal parental chromosome expression. Proc Natl Acad Sci U S A 77:3553–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Fay AW (2007) P-cluster maturation on nitrogenase MoFe protein. Proc Natl Acad Sci USA 104(25):10424–10429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurek T, Reinhold-Hurek B, van Montagu M, Kellenberger E (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperial J, Ugalde RA, Shah VK, Brill WJ (1984) Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae. J Bacteriol 158:187–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizuka J (1992) Trends in biological nitrogen fixation research and application. Plant Soil 141:197–209

    Article  CAS  Google Scholar 

  • Jacobson MR, Premakumar R, Bishop PE (1986) Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. J Bacteriol 167(2):480–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. doi:10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Dobereiner J (1994) Infection of sugarcane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. doi:10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esperanza AM, Martinez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host for Acetobacter diazotrophicus and isolation of other nitrogen-fixing Acetobacteria. Appl Environ Microbiol 63:3676–3683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston AWB, Beynon JL, Buchanan-Wollaston AV, Setchell SM, Hirsch PR, Beringer JE (1978) High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature (London) 276:634–636

    Article  Google Scholar 

  • Kennedy IR, Tchan YT (1992) Biological nitrogen fixation in non-leguminous field crops: recent advances. In: Biological nitrogen fixation for sustainable agriculture. Springer, Dordrecht, pp 93–118

    Chapter  Google Scholar 

  • Kim S, Burgess BK (1996) Evidence for the direct interaction of the nifW gene product with the MoFe protein. J Biol Chem 271:9764–9770

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Rees DC (1992) Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257(5077):1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Kinkle BK, Sadowsky MJ, Schmidt EL, Koskinen WC (1993) Plasmids pJP4 and r68.45 can be transferred between populations of bradyrhizobia in nonsterile soil. Appl Environ Microbiol 59(6):1762–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhof G, Reis VM, Baldani JI, Eckert B, Dobereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45–55

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. doi:10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Lodwig E, Poole P (2003) Metabolism of Rhizobium bacteroid. Crit Rev Plant Sci 22:37–78

    Article  CAS  Google Scholar 

  • Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 69(1):10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Martinez E, Palacios R, Sanchez F (1987) Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Evol Microbiol 41(3):417–426

    Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. doi:10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Mavingui P, Flores M, Romero D, Martinez-Romero E, Palacios R (1997) Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nature Biotech 15:464–469

    Article  Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1, 2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi:10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and agricultural. Biotechnology 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. doi:10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer International Publishing, Cham, pp 367–395. doi:10.1007/978-3-319-44409-3_16

    Google Scholar 

  • Merberg D, Maier RJ (1983) Mutants of Rhizobium japonicum with increased hydrogenase activity. Science 220(4601):1064–1065

    Article  CAS  PubMed  Google Scholar 

  • Merrick MJ, Gibbins JR (1985) The nucleotide sequence of the nitrogen-regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved features in bacterial RNA polymerase sigma factors. Nucleic Acids Res 13:7607–7620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhadhbi H, Jebara M, Zitoun A, Limam F, Aouani ME (2008) Symbiotic effectiveness and response to mannitol-mediated osmotic stress of various chickpea–rhizobia associations. World J Microbiol Biotechnol 24(7):1027–1035

    Article  Google Scholar 

  • Miller LD, Yost CK, Hynes MF, Alexander G (2007) The major chemotaxis gene cluster of Rhizobium leguminosarum bv. viciae is essential for competitive nodulation. Mol Microbiol 63:348–362

    Article  CAS  PubMed  Google Scholar 

  • Morett E, Buck M (1988) NifA-dependent in vivo protection demonstrates that the upstream activator sequence of nif promoters is a protein binding site. Proc Natl Acad Sci USA 85:9401–9405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris AC, Djordjevic MA (2006) The Rhizobium leguminosarum biovar trifolii ANU794 induces novel developmental responses on the subterranean clover cultivar Woogenellup. Mol Plant-Microbe Interact 19:471–479

    Article  CAS  PubMed  Google Scholar 

  • Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Benguedouar A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63(3):383–400

    Article  CAS  PubMed  Google Scholar 

  • Muthukumarasamy R, Revathi G, Loganathan P (2002) Effects of inorganic N on the population, in vitro colonization and morphology of Acetobacter diazotrophicus (syn. Gluconacetobacter diazotrophicus). Plant Soil 243:91–102

    Article  CAS  Google Scholar 

  • Nambiar PT, Ma SW, Iyer VN (1990) Limiting an insect infestation of nitrogen-fixing root nodules of the pigeon pea (Cajanus cajan) by engineering the expression of an entomocidal gene in its root nodules. Appl Env Microbiol 56(9):2866–2869

    CAS  Google Scholar 

  • Narula N, Vasudeva M (2007) Environmental microbiology-terrestrial environment. Department of microbiology, CCS Haryana agricultural University, Hisar −125 004, India

    Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Google Scholar 

  • Norel F, Elmerich C (1987) Nucleotide sequence and functional analysis of the two nifH copies of Rhizobium ORS571. J Gen Microbiol 133(6):1563–1576

    CAS  Google Scholar 

  • Nuti MP, Lepidi AA, Prakash RK, Schilperoort RA, Cannon FC (1979) Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmids. Nature 282:533–535

    Article  CAS  Google Scholar 

  • Okon Y, Hzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26(12):1591–1601

    Article  CAS  Google Scholar 

  • Orr C, James A, Leifert C, Cooper J, Cummings S (2011) Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Env Microbiol 77:911–919

    Article  CAS  Google Scholar 

  • Ott T, Van Dongen J, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535

    Article  CAS  PubMed  Google Scholar 

  • Ow DW, Ausubelf M (1983) Regulation of nitrogen metabolism genes by the nifA gene product in Klebsiella pneumoniae. Nature London 301:307–313

    Article  CAS  PubMed  Google Scholar 

  • Pahel GR, Rothstein DM, Magasanik BO (1982) Complex glnA-glnL-glnG operon of Escherichia coli. J Bacteriol 150(1):202–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey KK (1978) Novel techniques of gene transfer and plant improvement: an appraisal of transformation in eukaryotes. New Phytol 81:685–704

    Article  CAS  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Paul W, Merrick M (1989) The roles of the nifW, nifZ and nifM genes in Klebsiella pneumonia nitrogenase biosynthesis. Eur J Biochem 178:675–682

    Article  CAS  PubMed  Google Scholar 

  • Peters GA, Calvert HE, Kaplaw D, Ito O, Toia RE (1982) The Azolla-Anabaena symbiosis: morphology, physiology and use. Israel J Bot 31:305–323

    Google Scholar 

  • Peters JW, Stowell MH, Soltis SM, Finnegan MG, Johnson MK, Rees DC (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemist 36(6):1181–1187

    Article  CAS  Google Scholar 

  • Plazinski J, Ridge RW, Mckay IA, Djordjevic MA (1994) The nodDABC genes of Rhizobium leguminosarum biovar trifolii confer root-hair curling ability to a diverse range of soil bacteria and the ability to induce novel root swellings on beans. Func Plant Biol 21(3):311–325

    CAS  Google Scholar 

  • Pracht JE, Nickell CD, Harper JE, Bullock DG (1994) Agronomic evaluation of non-nodulating and hypernodulating mutants of soybean. Crop Sci 34(3):738–740

    Article  Google Scholar 

  • Prakash RK, Cummings B (1988) Creation of novel nitrogen-fixing actinomycetes by protoplast fusion of Frankia with Streptomyces. Plant Mol Biol 10:281–289

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Putnoky P, Kondorosi A (1986) Two gene clusters of Rhizobium meliloti code for early essential nodulation functions and a third influences nodulation efficiency. J Bacteriol 167(3):881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinto C, De La Vega H, Flores M, Leemans J, Cevallos MA, Pardo MA, Palacios R (1985) Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proc Natl Acad Sci USA 82(4):1170–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. doi:10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Rao DLN (2013) Soil health management-productivity-sustainability-resource management. Fertiliser Development and Consultation Organisation, New Delhi, pp 55–83

    Google Scholar 

  • Rao DLN (2014) Recent advances in biological nitrogen fixation in agricultural systems. Proc Ind Nat Sci Acad 80(2):359–378

    Article  Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2003) The natural history of nitrogen fixation. Mol Biol Evol 21(3):541–554

    Article  PubMed  CAS  Google Scholar 

  • Rediers H, Bonnecarrere V, Rainey PB, Hamonts K, Vanderleyden J, De Mot R (2003) Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Appl Environ Microbiol 69:6864–6874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed S, Cleveland C, Townsend A (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Rees DC, Akif TF, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Structural basis of biological nitrogen fixation. Philos Trans Math, Phys, Eng Sci Series A 363(1829):971–984

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Article  Google Scholar 

  • Reitzer LJ, Magasanik B (1986) Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45:785–792

    Article  CAS  PubMed  Google Scholar 

  • Resendis-Antonio O, Reed JL, Encarnación S, Collado-Vides J, Palsson B (2007) Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput Biol 3(10):192

    Article  CAS  Google Scholar 

  • Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836

    Google Scholar 

  • Roberts GP, Brill WJ (1981) Genetics and regulation of nitrogen fixation. Annu Rev Microbiol 35(1):207–235

    Article  CAS  PubMed  Google Scholar 

  • Roberts GP, MacNeil T, MacNeil D, Brill WJ (1978) Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae. J Bacteriol 136:267–279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roche P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, Promé JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67(6):1131–1143

    Article  CAS  PubMed  Google Scholar 

  • Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martinez-Romero E (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67(7):3264–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roger PA, Ladha JK (1992) Biological nitrogen fixation in wetland rice fields: estimation and contribution to nitrogen balance. Plant Soil 141:41–55

    Article  CAS  Google Scholar 

  • Romero D, Palacios R (1997) Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31(1):91–111

    Article  CAS  PubMed  Google Scholar 

  • Ronson CW, Bosworth A, Genova M, Gudbrandsen S, Hankinson T, Kwiatkowski R, Williams M (1990) Field release of genetically-engineered Rhizobium meliloti and Bradyrhizobium japonicum strains. In: Nitrogen fixation. Springer, Sun Prairie, pp 397–403

    Chapter  Google Scholar 

  • Ruvkun GB, Frederick MA (1980) Interspecies homology of nitrogenase genes. Proc Natl Acad Sci 77(1):191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabir JSM, El-Bestawy (2009) Enhancement of nodulation by some arid climate strains of Rhizobium leguminosarum biovar trifolii using protoplast fusion. World J Microbiol Biotechnol 25:545–552

    Article  Google Scholar 

  • Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc Royal Soc Lond B: Biol Sci 264:341–346

    Article  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. doi:10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Saikia SP, Jain V, Srivastava GC (2006) Effect of 2,4-D and inoculation with Azorhizobium caulinodans on maize. Acta Agron Hung 54:121–125

    Article  CAS  Google Scholar 

  • Sajid GM, Oberg SG, Campbell WF (1992) Detection of uptake hydrogenase activity in Rhizobium meliloti in symbiosis with Medicago sativa. Arid Soil Res Rehab 6(3):201–205

    Article  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar D, Meena VS, Haldar A, Rakshit R (2017) Site-specific nutrient management (SSNM): a unique approach towards maintaining soil health. In: In the adaptive soil management: from theory to practices, pp 69–88. doi:10.1007/978-981-10-3638-5_3

    Chapter  Google Scholar 

  • Sato T, Yashima H, Ohtake N, Sueyoshi K, Akao S, Ohyama T (1999) Possible involvement of photosynthetic supply in changes of nodule characteristics of hypernodulating soybeans. Soil Sci Plant Nutr 45(1):187–196

    Article  Google Scholar 

  • Schlaman HR, Spaink HP, Okker RJ, Lugtenberg BJ (1989) Subcellular localization of the nodD gene product in Rhizobium leguminosarum. J Bacteriol 171(9):4686–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seefeldt LC, Dean DR (1997) Role of nucleotides in nitrogenase catalysis. Acc Chem Res 30:260–266

    Article  CAS  Google Scholar 

  • Seneviratne G, Indrasena IK (2006) Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 31(5):639–643

    Article  PubMed  Google Scholar 

  • Shah VK, Stacey G, Brill WJ (1983) Electron transport to nitrogenase. Purification and characterization of Pyruvate: flavodoxin oxidoreductase the nifJ Gene product. J Biol Chem 258:12064–12068

    CAS  PubMed  Google Scholar 

  • Shanmugam KT, Carlo M (1976) Amino acids as repressors of nitrogenase biosynthesis in Klebsiella pneumoniae. Biochim Biophys Acta (BBA)-Gen Sub 437(2):322–332

    Article  CAS  Google Scholar 

  • Shanmugam KT, Valentine RC (1975) Molecular biology of nitrogen fixation. Science 187:919–924

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam KT, O'gara F, Andersen K, Valentine RC (1978) Biological nitrogen fixation. Annu Rev Plant Physiol 29(1):263–276

    Article  CAS  Google Scholar 

  • Shantharam S, Mattoo AK (1997) Enhancing biological nitrogen fixation: an appraisal of current and alternative technologies for N input into plants. Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 205–216

    Book  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. doi:10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Shridhar BS (2012) Review: nitrogen fixing microorganisms. Int J Microb Res 3(1):46–52

    Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. doi:10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Simon HM, Homer MJ, Roberts GP (1996) Perturbation of nifT expression in Klebsiella pneumoniae has limited effect on nitrogen fixation. J Bacteriol 178:2975–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu SS, Dadarwal KR (1992) Symbiotic effectivity of cowpea miscellany Rhizobium mutants having increased hydrogenase activity. Indian J Microbiol 32(4):411–416

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2000) Competition for nodulation among rhizobia in legume-Rhizobium symbiosis. Indian J Microbiol 40(4):211–246

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156(4):353–358

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Gupta SK, Suneja S, Dadarwal KR (2002a) Enhancement of green gram nodulation and growth by Bacillus species. Biol Plant 45(1):117–120

    Article  Google Scholar 

  • Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002b) Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and wilt sick soil conditions. Applied Soil Ecol 19:57–64

    Article  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. doi:10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh B, Ryan J (2015) Managing fertilizers to enhance soil health, First edn. IFA, Paris

    Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229–4473.2015.00012.9

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. doi:10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Sitrit Y, Barak Z, Kapulnik Y, Oppenheim AB, Chet I (1993) Expression of Serratia marcescens chitinase gene in Rhizobium meliloti during symbiosis on alfalfa roots. Mol Plant-microbe Interac: MPMI (USA) 6(3):293–298

    Article  CAS  Google Scholar 

  • Socolow RH (1999) Nitrogen management and the future of food: lessons from the management of energy and carbon. Proc Natl Acad Sci USA 96:6001–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza V, Eguiarte L, Avila G, Cappello R, Gallardo C, Montoya J, Piñero D (1994) Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultivated bean plants (Phaseolus vulgaris and Phaseolus coccineus) in Morelos, Mexico. Appl Environ Microbiol 60(4):1260–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen fixing organisms: pure and applied aspects. Chapman and Hall, London, p 256

    Book  Google Scholar 

  • Stepkowski T, Hughes CE, Law IJ, Markiewicz L, Gurda D, Agnieszka C, Lionel M (2007) Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Env Microbiol 73(10):3254–3264

    Article  CAS  Google Scholar 

  • Stepkowski T, Zak M, Moulin L, Króliczak J, Golinsk B, Narozna D, Safronov VI, Madrzak CJ (2011) Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe. Syst Appl Microbiol 34:368–375

    Article  PubMed  Google Scholar 

  • Streicher S, Gurney E, Valentine RC (1971) Transduction of the nitrogen-fixation genes in Klebsiella pneumoniae. Proc Natl Acad Sci USA 68:1174–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subba Rao NS (2009) Soil microbiology. In: Soil microorganisms and plant growth, 4th edn. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, p 130

    Google Scholar 

  • Swain H, Abhijita S (2013) Nitrogen fixation and its improvement through genetic engineering. J Global BioSci 2(5):98–112

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc., Sundherland

    Google Scholar 

  • Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia-Hernández A, Bustillos-Cristales MR, Jiménez-Salgado T, Caballero-Mellado J, Fuentes-Ramírez LE (2000) Natural endophytic occurrence of Acetobacter diazotrophicus in pineapple plants. Microbiol Ecol 39:49–55

    Article  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. doi:10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Thies JE, Singleton PW, Bohlool BB (1991) Modelling symbiotic performance of introduced rhizobia in the field by use of indices of indigenous population size and nitrogen status of the soil. Appl Environ Microbiol 57:29–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorneley NF, Lowe DJ (1983) Nitrogenase of Klebsiella pneumoniae: kinetics of the dissociation of oxidised iron-protein from the molybdenum-iron protein: identification of the rate limiting step for substrate reduction. Biochem J 215:393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorneley RN, Abell C, Ashby GA, Drummond MH, Eady RR, Huff S (1992) Posttranslational modification of Klebsiella pneumoniae flavodoxin by covalent attachment of coenzyme a, shown by 31P NMR and electrospray mass spectrometry, prevents electron transfer from the nifJ protein to nitrogenase. A possible new regulatory mechanism for biological nitrogen fixation. Biochemistry 31:1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Trainer MA, Charles TC (2006) The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol 71:377–386

    Article  CAS  PubMed  Google Scholar 

  • Trinick MJ (1973) Symbiosis between Rhizobium and the non-legume Trema aspera. Nature 244:459–460

    Article  Google Scholar 

  • Trinick MJ, Hadobas PA (1995) Formation of nodular structures on the non-legumes Brassica napus, B. campestris, B. juncea and Arabidopsis thaliana with Bradyrhizobium and Rhizobium isolated from Parasponia spp. or legumes grown in tropical soils. Plant Soil 172(2):207–219

    Article  CAS  Google Scholar 

  • Tubb RS (1974) Glutamine synthetase and ammonium regulation of nitrogenase synthesis in Klebsiella. Nature 251:481–485

    Article  CAS  PubMed  Google Scholar 

  • Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem 47(1):1127–1162

    Article  CAS  PubMed  Google Scholar 

  • Van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil: a review. Biol Fert Soils 10(2):127–133

    Article  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61(2):121–135

    PubMed  PubMed Central  Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agri Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P (2017a) Microbial dynamics as influenced by bio-organics and mineral fertilizer in alluvium soil of Varanasi. India Int J Curr Microbiol App Sci 6(2):1516–1524

    Article  Google Scholar 

  • Verma R, Maurya BR, Meena VS, Dotaniya ML, Deewan P, Jajoria M (2017b) Enhancing production potential of cabbage and improves soil fertility status of indo-Gangetic plain through application of bio-organics and mineral fertilizer. Int J Curr Microbiol App Sci 6(3):301–309

    Google Scholar 

  • Vlassak KM, Vanderleyden J, Graham PH (1997) Factors influencing nodule occupancy by inoculant rhizobia. Crit Rev Plant Sci 16(2):163–229

    Article  Google Scholar 

  • Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Dobereiner J (1999) Isolation and characterization of diazotrophs from banana and pineapple plants. Plant Soil 210:103–113

    Article  CAS  Google Scholar 

  • Webster G, Gough C, Vasse J, Batchelor CA, O’callaghan KJ, Kothari SL, Davey MR, Dénarié J, Cocking EC (1997) Interactions of rhizobia with rice and wheat. In: Opportunities for biological nitrogen fixation in rice and other non-legumes. Springer, Dordrecht, pp 115–122

    Chapter  Google Scholar 

  • Weisany W, Raei Y, Allahverdipoor KH (2013) Role of some of mineral nutrients in biological nitrogen fixation. Bull Env Pharmacol Life Sci 2(4):77–84

    CAS  Google Scholar 

  • White J, Prell J, James EK, Poole P (2007) Nutrient sharing between symbionts. Plant Physiol 144:604–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 769–863

    Chapter  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. doi:10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus R, Buckley D, Schmidt T, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. doi:10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Young JPW, Johnston AWB (1989) The evolution of specificity in the legume-Rhizobium symbiosis. Trends Ecol Evol 4(11):341–349

    Article  CAS  PubMed  Google Scholar 

  • Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR (2000) NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc Natl Acad Sci USA 97:599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. doi:10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JLBI, Winston JB (1981) Temperature sensitivity of the regulation of nitrogenase synthesis by Klebsiella pneumoniae. J Bacteriol 145(2):1116–1118

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. S. S. Sindhu, Professor, Microbiology, CCS Haryana Agricultural University, Hisar, India, for his guidance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bholanath Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Saha, B. et al. (2017). Biological Nitrogen Fixation for Sustainable Agriculture. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5343-6_4

Download citation

Publish with us

Policies and ethics