Skip to main content

Implementation of Biofortification Technology by Using PGPR for Sustainable Agricultural Production

  • Chapter
  • First Online:

Abstract

A major challenge in the twenty-first century is to fulfill the hunger need of day-by-day increasing populations. Hence, there is the need to increase the productivity of cultivated land and food fortification. The use of biofortification nutrient and mineral content can be increased in staple food. Economically important crops have limited production yield due to the scarcity and hyper-accumulation of the nutrients and attack of plant pathogen. There are several microbes such as fungi, actinomycetes, cyanobacteria, and plant growth-promoting rhizobacteria (PGPR) possessing plant growth-promoting mechanisms. These microbes help to increase nutrient uptake (e.g., Mn, P, Fe, S, Zn, etc.) by making it phyto-available in rhizosphere. Plant-microbial interaction (mycorrhization and actinomycetes interaction) improves the health of plant by protecting them from attack of phytopathogen and toxicity of hyper-accumulation of nutrient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Alla MH, Mahmoud ALE, Issa AA (1994) Cyanobacterial biofertilizer improve growth of wheat. Phyton 34:11–18

    Google Scholar 

  • Agrios NG (2005) Plant pathology, 5th edn. Elsevier/Academic, Amsterdam, p 635

    Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. doi:10.1007/978-81-322-2776-2_21

    Chapter  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens -an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85

    Google Scholar 

  • Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. doi:10.1007/978-81-322-2776-2_18

    Google Scholar 

  • Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J. doi:10.1080/01490451.2016.1219431

  • Begon M, Harper JL, Townsend CR (1996) Symbiosis and mutualism. In: Ecology, 3rd edn. Blackwell Sciences Ltd, Oxford, p 482

    Google Scholar 

  • Benimeli CS, Polti MA, Albarracin VH, Abate CM, Amoroso MJ, Khan MS, Goel R, Musarrat J (2011) Bioremediation potential of heavy metal-resistant actinobacteria and maize plants in polluted soil. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Springer, Dordrecht, pp 459–477

    Chapter  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Fact 13:66

    Article  Google Scholar 

  • Bishnoi U (2015) PGPR interaction: an ecofriendly approach promising the sustainable agriculture system. Adv Bot Res 75:81–113

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2015) Arbuscular mycorrhizal dialogues: do you speak ‘plantish’ or ‘fungish’? Trends Plant Sci 20:150–154

    Article  CAS  PubMed  Google Scholar 

  • Cakmakci R, Donmez F, Aydin A, Sahin F (2006) Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Choudhary KK (2011) Occurrence of nitrogen-fixing cyanobacteria during different stages of paddy cultivation. Bangladesh J Plant Taxon 18:73–76

    Article  Google Scholar 

  • Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. doi:10.1007/978-81-322-2776-2_20

    Chapter  Google Scholar 

  • Delvasto P, Valverde A, Ballester A, Igual JM, Munoz JA (2006) Characterization of brushite asa a re-crystallization product formed during bacterial solubilization of hydroxyapatite in batch culture. Soil Biol Biochem 38:2645–2654

    Article  CAS  Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. doi:10.1007/978-81-322-2776-2_6

    Chapter  Google Scholar 

  • Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India Sect B Biol Sci 85(1):1–12

    Article  CAS  Google Scholar 

  • Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. doi:10.1007/978-81-322-2776-2_19

    Chapter  Google Scholar 

  • El-Gaml M (2006) Studies on cyanobacteria and their effect on some soil properties. Thesis, Benha University. Enhanced-Efficiency Fertilizers, Frankfurt, Germany. Digital Commons, University of Nebraska

    Google Scholar 

  • Fellbaum CR, Mensah JA, Pfeffer PE, Kiers ET, Bücking H (2012) The role of carbon in fungal nutrient uptake and transport. Plant Signal Behav 7(11):1509–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer RA, Byerlee D, Edmeades GO (2014) Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph No. 158. Australian centre for international agricultural research, Canberra

    Google Scholar 

  • García-Bañuelos ML, Sida-Arreola JP, Sánchez E (2014) Bio fortification – promising approach to increasing the content of iron and zinc in staple food crops. J Elem Sci 19(3):865–888

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting Pseudomonas. Can J Microbiol l41:533–536

    Article  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Samineni S, Kumar CVS (2016) Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. SpringerPlus 5:1882. doi:10.1186/s40064-016-3590-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium–legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194

    Article  CAS  PubMed  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16S rDNA and 16S Rrna sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizo-sphere soil. Env Microbiol 5:896–907

    Article  CAS  Google Scholar 

  • Grusak MA (2001) Plant macro and micronutrient minerals. Encyclopedia of life Sciences. Wiley, Hoboken, pp 1–5

    Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102. doi:10.4172/1948-5948.1000188

    Google Scholar 

  • Hafeez FY, Abaid-Ullah M, Hassan MN (2013) Plant growth promoting rhizobacteria as zinc mobilizers: a promising approach for cereals biofortification. In: Bacteria in agrobiology: crop productivity. Springer, New York, pp 217–235

    Chapter  Google Scholar 

  • Haferburg G, Merten D, Buchel G, Kothe E (2007) Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (1999) Biotrophic interfaces and nutrient transport in plant/fungal symbioses. J Exp Bot 50:1013–1022

    Article  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan MA (2012) Investigation of the nitrogen fixing cyanobacteria (BGA) in rice fields of north-West region of Bangladesh. I: Nonfilamentous. J Environ Sci Nat Resour 5:185–192

    Google Scholar 

  • Huber DM, Graham RD (1999) The role of nutrition in crop resistance and tolerance to disease. In: Rengel Z (ed) Mineral nutrition of crops fundamental mechanisms and implications. Food Product Press, New York, pp 205–226

    Google Scholar 

  • Jaiswal P, Kashyap AK, Prasanna R, Singh PK (2010) Evaluating the potential of N. calcicola and its bicarbonate resistant mutant as bioameliorating agents for ‘Usar’ soil. Ind J Microbiol 50:12–18

    Article  CAS  Google Scholar 

  • Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. doi:10.1007/978-81-322-2776-2_2

    Chapter  Google Scholar 

  • Jansson C, Northen T (2010) Calcifying cyanobacteria–the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol 21:365–371. doi:10.1016/j.copbio.2010.03.017

    Article  CAS  PubMed  Google Scholar 

  • Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221

    CAS  Google Scholar 

  • Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. doi:10.1007/978-81-322-2776-2_11

    Chapter  Google Scholar 

  • Karthikeyan N, Prasanna R, Nain L, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskès ML (2004) Non-symbiotic bacterial diazotrophs in crop-framing systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Khalid S, Asghar HN, Akhtar MA, Aslam A, Zahir ZA (2015) Biofortification of iron in chickpea by plant growth promoting rhizobacteria. Pak J Bot 47(3):1191–1194

    CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Station de Pathologie Végétale et Phyto-Bactériologie (Ed.), Proceedings of the 4th international conference on plant pathogenic bacteria, vol II. Gilbert-Clarey, Tours, France, pp 879–882

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015a) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar MK, Singh DP, Prabha R, Sharma AK (2015b) Role of cyanobacteria in nutrient cycle and use efficiency in the soil. In: Rakshit A (ed) Nutrients use efficiency: from basic to advances. Springer, New Delhi, pp 163–171

    Chapter  Google Scholar 

  • Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822

    Article  Google Scholar 

  • Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. doi:10.1007/978-81-322-2776-2_5

    Chapter  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul. doi:10.1007/s00344-016-9663-5

  • Lampis S, Ferrari A, Cunha-Queda C, Alvarenga P, Di Gregorio S, Vallini G (2009) Selenite resistant rhizobacteria stimulate SeO3–2 phytoextraction by Brassica juncea in bioaugmented water filtering artificial beds. Environ Sci Pollut Res 16:663–670

    Article  CAS  Google Scholar 

  • Leigh EG Jr (2010) Review: the evolution of mutualism. J Evol Biol 23:2507–2528

    Article  PubMed  Google Scholar 

  • Manjunath M, Kanchan A, Ranjan K, Venkatachalam S, Prasanna R, Ramakrishnan B, Hossain F, Nain L, Shivay YS, Rai AB, Singh B (2016) Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon 2(2):1–28. e00066

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. doi:10.1007/978-81-322-2776-2_10

    Chapter  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12

    Google Scholar 

  • Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscan 8(3):931–935

    CAS  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Cleaner Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. doi:10.1016/j.jclepro.2015.04.044

    Article  Google Scholar 

  • Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. doi:10.1016/j.jclepro.2015.04.030

    Article  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811

    Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Cleaner Prod 112(1):1258–1260

    Article  Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. doi:10.1007/978-81-322-2776-2_1

    Chapter  Google Scholar 

  • Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691

    Article  Google Scholar 

  • Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and Agrobiotechnology. Springer International Publishing, Cham, pp 367–395. doi:10.1007/978-3-319-44409-3_16

    Google Scholar 

  • Murgia I, Arosio P, Tarantino D, Soave C (2012) Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci 17(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Noya Y, Jan-Roblero J, González-Chávez MC, Hernández-Gama R, Hernández-Rodríguez C (2010) Bacterial communities associated with the rhizosphere of pioneer plants growing on heavy metals-contaminated soils. Antonie Van Leeuwenhoek 97:335–349

    Article  CAS  PubMed  Google Scholar 

  • Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116

    Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. doi:10.1007/978-81-322-2776-2_23

    Chapter  Google Scholar 

  • Prasanna R, Joshi M, Rana A, Shivay YS, Nain L (2011) Influence of co-inoculation of bacteria-cyanobacteria on crop yield and C–N sequestration in soil under rice crop. World J Microbiol Biotechnol 28(3):1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L (2015) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1(1):998507

    Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. doi:10.1007/978-81-322-2776-2_8

    Chapter  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. doi:10.1007/978-81-322-2776-2_4

    Chapter  Google Scholar 

  • Rana A, Saharan B, Nain L, Prasanna R, Shivay YS (2012a) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58(5):573–582

    Article  CAS  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012b) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rana A, Kabi SR, Verma S, Adak A, Pal M, Shivay YS, Nain L (2015) Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro-and micronutrients in grains in rice–wheat cropping sequence. Cogent Food Agric 1(1):1037379

    Google Scholar 

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. doi:10.1007/978-81-322-2776-2_17

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. doi:10.1007/978-81-322-2776-2_9

    Chapter  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209

    Google Scholar 

  • Sahu D, Priyadarshini I, Rath B (2012) Cyanobacteria – as potential biofertilizer. CIB Tech J Microbiol 1:20–26

    Google Scholar 

  • Sarmantry S, Rout GR, Das P (1998) Role of chromium on plant growth and metabolism. Acta Physiol Plantarum 20:201–212

    Article  Google Scholar 

  • Sathya A, Vijaybharathi R, Srinivas V, Gopalkrishnan S (2016) Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Schutze E, Kothe E (2012) Heavy metal-resistant streptomycetes in soil. In: Soil biology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Schutze E, Klose M, Merten D, Nietzsche S, Senftleben D, Roth M, Kothe E (2014) Growth of streptomycetes in soil and their impact on bioremediation. J Hazard Mat 267:128–135

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. doi:10.1007/978-81-322-2776-2_15

    Chapter  Google Scholar 

  • Shridhar SB (2012) Review: nitrogen fixing microorganisms. Intl J Microbiol Res 3(1):46–52

    Google Scholar 

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. doi:10.1007/978-81-322-2776-2_16

    Chapter  Google Scholar 

  • Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. doi:10.1007/978-81-322-2776-2_13

    Chapter  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. doi:10.5958/2229-4473.2015.00012.9

    Google Scholar 

  • Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. doi:10.1007/978-981-10-2558-7_4

    Chapter  Google Scholar 

  • Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. Fed Eur Mat Soc Microbiol Ecol 54:131–140

    CAS  Google Scholar 

  • Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154

    Article  CAS  Google Scholar 

  • Sukor A (2013) Effect of cyanobacterial fertilizers compared to commonly used organic fertilizers on nitrogen availability, lettuce growth and nitrogen use efficiency on different soil textures. MS thesis, Colorado State University

    Google Scholar 

  • Tabita FR, Colletti C (1979) Carbon dioxide assimilation in cyanobacteria: regulation of ribulose, 1,5-bisphosphate carboxylase. J Bacteriol 140:452–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. doi:10.1007/978-81-322-2776-2_22

    Chapter  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial diversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Timonin ME (1965) Interaction of higher plants and soil microorganisms. In: Gilmore CM, Allen ON (eds) Microbiology and soil fertility. Oregon State University Press, Corvallis, pp 135–138

    Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32-P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trappe JM(1996) What is a mycorrhiza? In: Proceedings of the 4th European symposium on Mycorrhizae, Grandad, Spain. EC Report EUR 19728. pp 3–9

    Google Scholar 

  • Uchida RS (2000) Essential nutrients for plant growth: nutrient functions and deficiency symptoms. In: Silva JA, Uchida RS (eds) Plant nutrient management in Hawaii soils. Manoa college of tropical agriculture and human resources. University of Hawaii at Manoa, Honolulu, pp 31–55

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent Combaret C (2013) Plant growth promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting bacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Varma A, Ar S, Sudha S, Kumari M, Bharati K, Sarbhoy AK, Maier W, Walter MH, Strack D, Franken P, An S, Malla R, Hurek T (2002) Piriformospora indica: a plant stimulator and pathogen inhibitor arbuscular mycorrhizalike fungus. In: Markandey DK, Markandey NR (eds) Microorganisms in bioremediation. Capital Book Company, New-Delhi, pp 71–89

    Google Scholar 

  • Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. doi:10.1007/978-81-322-2776-2_7

    Chapter  Google Scholar 

  • Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919

    CAS  Google Scholar 

  • Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Weale A (2010) Ethical arguments relevant to the use of GM crops. New Biotechnol 27:582–587

    Article  CAS  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:583–586

    Article  CAS  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. doi:10.1007/978-81-322-2776-2_14

    Chapter  Google Scholar 

  • Yasin M, El-Mehdawi AF, Elizabeth AH, Faisal M (2015) Selenium Fortified wheat: potential of microbes for Biofortification of selenium and other essential nutrients. Int J Phytoremediation 17:777–786

    Article  CAS  PubMed  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. doi:10.1007/978-81-322-2776-2_12

    Chapter  Google Scholar 

  • Zafar M, Abbasi MK, Khan MA, Khaliq A, SultanT AM (2012) Effect of plant growth-promoting rhizobacteria on growth, nodulation and nutrient accumulation of lentil under controlled conditions. Pedosphere 22:848–859

    Article  CAS  Google Scholar 

  • Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. doi:10.1007/978-81-322-2776-2_3

    Chapter  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WTJ (2003) Plant growth promoting rhizobacteria:applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CK, Nayak SC (2016) Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 40(2):182–207

    Article  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2012) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the editors for the invitation to contribute the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urja Pandya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dhuldhaj, U., Pandya, U. (2017). Implementation of Biofortification Technology by Using PGPR for Sustainable Agricultural Production. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5343-6_3

Download citation

Publish with us

Policies and ethics