Skip to main content

Attempts for Biological Control of Ralstonia solanacearum by Using Beneficial Microorganisms

  • Chapter
  • First Online:
Book cover Agriculturally Important Microbes for Sustainable Agriculture

Abstract

Bacterial wilt pathogen Ralstonia solanacearum causes catastrophic loss in different plants across the genera and climatic conditions. It has a huge genetic diversity which affects tropical, subtropical, and warm temperate region. Apart from solanaceous plants, it affects a vast array of many other plant species. Wide host range and its survival capacity in various environments such as irrigation water and soil make it difficult to control R. solanacearum. Host resistance breakdown due to high genotype and environment interactions was frequently encountered. Therefore, integrated approach combining host plant resistance and cultural and biological control measures seems effective. Although excellent attempts have been made in management of R. solanacearum, still there is great opportunity to contribute to this problem for a stable solution. Varied chemical, cultural, agronomical, biological, biotechnological approaches, etc. have been used in addressing problem of Ralstonia with different levels of success. Biocontrol of R. solanacearum by different microorganisms has great potential. Microbes like Bacillus, Pseudomonas, Azotobacter, Streptomyces, etc. have been found suitable in suppressing bacterial wilt. This chapter focuses on different approaches of R. solanacearum biocontrol like the use of arbuscular mycorrhizal (AM) fungi, bacterial endophytes, bacteriophages, bacterial volatile compounds, chitosan, silicon, etc. in detail. It also briefs about present scenario of R. solanacearum control with future potential to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACIAR (2000) Evaluating bio fumigation for soil-borne disease management in tropical vegetable production. Technical Report. ACIAR-CSIRO-NCPC Project No.LWR2/2000/114, pp 4–6, 11–16, 20–21

    Google Scholar 

  • Adebayo OS, Kintomo AA, Fadamiro HY (2009) Control of bacterial wilt disease of tomato through integrated crop management strategies. Int J veg Sci 15(2):96–105

    Article  Google Scholar 

  • Agrios GN (1997) Plant pathology, 4th edn. Academic, San Diego

    Google Scholar 

  • Akiew EB, Hams F (1990) Archontophoenix alexandrae, a new host of Pseudomonas solanacearum in Australia. Plant Dis 74:615

    Article  Google Scholar 

  • Akiew S, Trevorrow P, Kirkegaard J (1996) Mustard green manure reduces bacterial wilt. ACIAR Bacterial Wilt Newsl 13:5–6

    Google Scholar 

  • Alan AR, Earle ED (2002) Sensitivity of bacterial and fungal plant pathogens to the lytic peptides, MSI-99, magainin II, and cecropin B. Mol Pl Microbe Int 15:701–708

    Article  CAS  Google Scholar 

  • Alizadeh H, Behboudi K, Amadzadeh M, Javan-Nikkhah M, Zamioudis C (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65:14–23

    Article  Google Scholar 

  • Almoneafy AA, Xie GL, Tian WX, Xu LH, Zhang GQ, Ibrahim M (2012) Characterization and evaluation of Bacillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt. Afr J Biotechnol 11(28):7193–7201

    Google Scholar 

  • Alyie N, Fininsa C, Hikias Y (2008) Evaluation of rhizosphere bacterial antagonist for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (R. solanacearum). Biol Control 47:282–288

    Article  Google Scholar 

  • Araujo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68(10):4906–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audrain B, Frag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39:222–233

    Article  PubMed  Google Scholar 

  • Autrique A, Potts MJ (1987) The influence of mixed cropping on the control of potato bacterial wilt. Ann Appl Biol 111:125–133

    Article  Google Scholar 

  • Ayana G, Fininsa C, Ahmed S, Wydra K (2011) Effects of soil amendment on bacterial wilt caused by Ralstonia solanacearum and tomato yields in Ethiopia. J Plant Prot Res 51(1):72–76

    Article  Google Scholar 

  • Barranquero JAG, Arrebola E, Bonilla N, Sarmiento D, Cazorla FM, De Vicente A (2012) Environmentally friendly treatment alternatives to bordeaux mixture for controlling bacterial apical necrosis (BAN) of mango. Plant Pathol 61(4):665–676

    Article  CAS  Google Scholar 

  • Benhamou N, Rey P, Chjerif M, Hockenhull J, Tirilly Y (1997) Treatment with the mycoparasite, Pythium oligandrum, triggers the induction of defense related reactions in tomato roots upon challenge with Fusarium oxysporum f.sp. radicis-lycopersici. Phytopathology 87:108–122

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Rey P, Picard K, Tirilly Y (1999) Ultrastructural and cytochemical aspects of the interaction between the mycoparasite, Pythium oligandrum, and soilborne pathogens. Phytopathology 89:506–517

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Brown PD, Morra MJ (1997) Control of soil-borne plant pests using glucosinolate containing plants. Adv Agron 61:167–231

    Article  CAS  Google Scholar 

  • Buddenhagen IW, Sequeira L, Kelman A (1962) Designation of races in Pseudomonas solanacearum. Phytopathology 52(8):726

    Google Scholar 

  • Buskov S, Serra B, Rosa E, Sorensen H, Sorensen JC (2002) Effects of intact glucosinolates and products produced from glucosinolates in myrosinase catalysed hydrolysis on the potato cyst nematode (Globodera rostochiensis cv woll). J Agric Food Chem 50:690–695

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Neal AL, Van Wees SCM, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P (2006) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor Appl Genet 113:110–121

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty G, Kalita MC (2012) Biocontrol potential of Pseudomonas fluorescens against bacterial wilt of Brinjal and its possible plant growth promoting effects. Ann Biol Res 3(11):5083–5094

    Google Scholar 

  • Chandrashekara KN, Mothukapalli KP, Manthirachalam D, Akella V, Khan ANA (2012) Prevalence of races and biotypes of Ralstonia solanacearum in India. J Plant Protect Res 52(1):53–58

    Google Scholar 

  • Chen J, Caldwell RD, Robinson CA, Steinkamp R (2000) Silicon: the estranged medium element. Bulletin 341. Environmental Horticulture, Gainesville

    Google Scholar 

  • Chen Y, Liu M, Wang L, Lin W, Fan X, Cai K (2015) Proteomic characterization of silicon-mediated resistance against Ralstonia solanacearum in tomato. Plant Soil 387(1):425–440

    Article  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Ciampi-Panno L, Fernandez C, Bustamante P, Andrade N, Ojeda S, Contreras A (1989) Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am Potato J 66(5):315–332

    Article  Google Scholar 

  • Dalal NR, Dalal SR, Golliwar VG, Khobragade RI (1999) Studies on grading and pre-packaging of some bacterial wilt resistant brinjal (Solanum melongena L.) varieties. J Soils Crops 9:223–226

    Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  • Dannon EA, Wydra K (2004) Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiol Mol Plant Pathol 64:233–243

    Article  CAS  Google Scholar 

  • Datnoff LE, Snyder GH, Korndorfer GH (2001) Silicon in agriculture. Studies in Plant Science 8. Elsevier, Amsterdam, p 44

    Google Scholar 

  • Daub ME, Jenns AE (1989) Field and greenhouse analysis of variation for disease resistance in tobacco somaclones. Phytopathology 79:600–605

    Article  Google Scholar 

  • Denny T (2006) Plant pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Dordrecht, pp 573–644

    Chapter  Google Scholar 

  • Deslandes L, Genin S (2014) Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. Curr Opin Plant Biol 20C:110–117

    Article  Google Scholar 

  • Diogo RVC, Wydra K (2007) Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol Mol Plant Pathol 70:120–129

    Article  CAS  Google Scholar 

  • Elizabeth KK (2012) Effects of cabbage plant residues and chemical soil fumigation on bacterial wilt caused by soil-borne Ralstonia solanacearum. Kenyatta UNI, Nairobi, p 130

    Google Scholar 

  • Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. American Phytopathological Society Press, St Paul, pp 9–28

    Google Scholar 

  • Enfinger JM, McCarter SM, Jaworski CA (1979) Evaluation of chemicals and application methods for control of bacterial wilt of tomato transplants. Phytopathology 69(6):637–340

    Article  CAS  Google Scholar 

  • Epstein E (2001) Silicon in plants: facts vs concepts. In: Datnoff LE, Snyder GH, Korndorfer GH (eds) Silicon in agriculture. Elsevier Science, Dordrecht, pp 1–15

    Google Scholar 

  • Fauteux F, Remus-Borel W, Menzies JG, Belanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Fawe A, Menzies JG, Cherif M, Belanger RR (2001) Silicon and disease resistance in dicotyledons. In: Datnoff LE, Korndorfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 159–169

    Chapter  Google Scholar 

  • Fegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex? In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. The American Phytopathological Society, St. Paul, pp 449–461

    Google Scholar 

  • Feng H, Li Y, Liu Q (2013) Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. Afr J Microbiol Res 7(15):1311–1318

    Article  Google Scholar 

  • Frey P, Prior P, Marie C, Kotoujansky A, Trigalet-Demery D, Trigalet A (1994) Hrp- mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Appl Environ Microbiol 60(9):3175–3181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T (2011) Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77(12):4155–4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genin S (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol 187:920–928

    Article  PubMed  Google Scholar 

  • Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89

    Article  CAS  PubMed  Google Scholar 

  • Ghareeb H, Bozso Z, Ott PG, Repenning C, Stahl F, Wydra K (2011a) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75:83–89

    Article  CAS  Google Scholar 

  • Ghareeb H, Bozso Z, Otto PG, Wydra K (2011b) Silicon and Ralstonia solanacearum modulate expression stability of housekeeping genes in tomato. Physiol Mol Plant Pathol 75:176–179

    Article  CAS  Google Scholar 

  • Ghini R, Patricio FR, Bettiol W, de Almeida IM, Maia AD (2007) Effect of sewage sludge on suppressiveness to soil-borne plant pathogens. Soil Biol Biochem 39(11):2797–2805

    Article  CAS  Google Scholar 

  • Gopalakrishnan TR, Singh PK, Sheela KB, Shankar MA, Kutty PCJ, Peter KV (2005) Development of bacterial wilt resistant varieties and basis of resistance in eggplant (Solanum melongena L.) In: Allen C, Prior P, Hayward A (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St Paul, pp 293–300

    Google Scholar 

  • Gorissen A, Van Overbeek LS, Van Elsas JD (2004) Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil. Can J Microbiol 50(8):587–593

    Article  CAS  PubMed  Google Scholar 

  • Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, Servaes A, Sihachakr D (2005) Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (Solanum melongena L.) Plant Sci 168:319–327

    Article  CAS  Google Scholar 

  • Granada GA, Sequeira L (1983) Survival of Pseudomonas solanacearum in soil, rhizosphere, and plant roots. Can J Microbiol 29(4):433–440

    Article  Google Scholar 

  • Grey BE, Steck TR (2001) The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl Environ Microbiol 67:3866–3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JH, Qi H-Y, Guo Y-H, Ge H-L, Gong L-Y, Zhang L-X, Sun P-H (2004) Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol Control 29:66–72

    Article  Google Scholar 

  • Hanson PM, Sitathani K, Sadashiva AT, Yang RY, Graham E, Ledesma D (2007) Performance of Solanum habrochaites LA1777 introgression line hybrids for marketable tomato fruit yield in Asia. Euphytica 158(1–2):167–178

    Article  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96(2):190–194

    Article  CAS  PubMed  Google Scholar 

  • Harvey SG, Sams CE (2001) Brassica biofumigation increases marketable tomato yield, Knoxville Experiment Station

    Google Scholar 

  • Hase S, Shimizu A, Nakaho K, Takenaka S, Takahashi H (2006) Induction of transient ethylene and reduction in severity of tomato bacterial wilt by Pythium oligandrum. Plant Pathol 55:537–543

    Article  CAS  Google Scholar 

  • Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T (2008) Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol 57:870–876

    Article  CAS  Google Scholar 

  • Hayward AC (2000) Ralstonia solanacearum. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, San Diego, pp 32–42

    Google Scholar 

  • Hayward AC, Hartmann GL (1994) Pseudomonas solanacearum. In: Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases, vol 1, pp 139–151

    Google Scholar 

  • He LY, Sequeira L, Kelman A (1983) Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis 12:1357–1361

    Article  Google Scholar 

  • Higa T (1996) Effective microorganisms–their role in Kyusei nature farming. In: Parr JF et al (eds) Proceedings of the 3rd international nature farming conference. USDA, Washington, DC, pp 20–23

    Google Scholar 

  • Hoang HL, Furuya N, Kurose D, Yamamoto I, Takeshita M, Takanami Y (2004) Identification of the endophytic bacterial isolates and their in vitro and in vivo antagonism against Ralstonia solanacearum. J Fac Agric Kyushu Univ 49:233–241

    Google Scholar 

  • Hoffland EC, Pieterse LB, van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis related proteins. Physiol Mol Plant Pathol 46:309–320

    Article  CAS  Google Scholar 

  • Hoitink HAJ, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96(2):186–189

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Hussain TR, Ahmad G, Jillana MY, Akhtar SN (1993) Applied EM technology. Nature Farm Research Center, University Agriculture, Faisalabad, pp 1–6

    Google Scholar 

  • Jardine DJ, Stephens CT (1987) Influence of timing of application and chemical on control of bacterial speck of tomato. Plant Dis 71:405–408

    Article  CAS  Google Scholar 

  • Javaid A, Bajwa R, Siddiqi I, Bashir U (2000) EM and VAM technology in Pakistan VIII: nodulation, yield and VAM colonization in Vigna mungo (L.) in soils with different histories of EM application. Int J Agric Biol 2(1–2):1–5

    Google Scholar 

  • Ji P, Momol T, Olson SM, Hong J, Pradhanang P, Narayanan A, Jones JB (2004) New tactics for bacterial wilt management on tomatoes in the southern US. Acta Hortic 34:173–178

    Google Scholar 

  • Ji P, Momol MT, Olson SM, Pradhanang PM, Jones JB (2005) Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Dis 89:497–500

    Article  CAS  Google Scholar 

  • Ji P, Momol T, Olson S, Meister C, Norman D, Jones J (2007) Evaluation of phosphorous acid containing products for managing bacterial wilt of tomato. Phytopathology 97(7):S52

    Google Scholar 

  • Kang SH, Cho H, Cheong H, Ryu C, Kim JF, Park S (2007) Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.) J Microbiol Biotechnol 17(1):96

    CAS  PubMed  Google Scholar 

  • Kawaguchi K, Ohta K, Goto M (1981) Studies on bacterial wilt of strawberry plants caused by Pseudomonas solanacearum 2. f3-D-Glucogallin, the antibacterial substance detected in the tissues of strawberry plants. Ann Phytopathol Soc Jpn 47:520–527

    Article  Google Scholar 

  • Kelman A (1953) The bacterial wilt caused by Pseudomonas solanacearum. NC Agric Exp Sta Tech Bull 99:194

    Google Scholar 

  • Kelman A (1998) One hundred and one years of research on bacterial wilt. In: Bacterial wilt disease. Springer Berlin, Heidelberg, pp 1–5

    Google Scholar 

  • Kiirika LM, Stahl F, Wydra K (2013) Phenotypic and molecular characterization of resistance induction by single and combined application of chitosan and silicon in tomato against Ralstonia solanacearum. Physiol Mol Plant Pathol 81:1–12

    Article  CAS  Google Scholar 

  • Kim SG, Kim KW, Park EW, Choi D (2002) Silicon induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095–1103

    Article  PubMed  Google Scholar 

  • Kinyua ZM, Olanya M, Smith JJ, El-Bedewy R, Kihara SN, Kakuhenzire RK et al (2005) Seed-plot technique: empowerment of farmers in production of bacterial wilt-free seed potato in Kenya and Uganda. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul, pp 167–175

    Google Scholar 

  • Kirkegaard J, Sarwar M, Wong PW, Mead A (1998) Bio fumigation by brassicas reduces take-all infection. In: Michalk DL, Pratley JE (eds) “Agronomy-growing a greener future” Proceedings 9th Australian agronomy conference, pp 456–468

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 11:1259–1266

    Article  Google Scholar 

  • Kloos P, Tulog B, Tumapon AS (1987) Effects of intercropping potato on bacterial wilt. Philipp Agric 70:83–90

    Google Scholar 

  • Kurabachew H, Wydra K (2013) Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol Control 67(1):75–83

    Article  Google Scholar 

  • Kurabachew H, Assefa F, Hiskias Y (2007) Evaluation of Ethiopian isolates of Pseudomonas fluorescens as biocontrol agent against potato bacterial wilt caused by Ralstonia (Pseudomonas) solanacearum. Acta Agric Slov 90:125–135

    Google Scholar 

  • Kurabachew H, Stahl F, Wydra K (2013) Global gene expression of rhizobacteria-silicon mediated induced systemic resistance in tomato (Solanum lycopersicum) against Ralstonia solanacearum. Physiol Mol Plant Pathol 84:44–52

    Article  CAS  Google Scholar 

  • Lebeau A, Daunay MC, Frary A, Palloix A, Wang JF, Dintinger J (2011) Bacterial wilt resistance in tomato, pepper, and eggplant: genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154–165

    Article  CAS  PubMed  Google Scholar 

  • Lebeau A, Gouy M, Daunay MC, Wicker E, Chiroleu F, Prior P (2013) Genetic mapping of a major dominant gene for resistance to Ralstonia solanacearum in eggplant. Theor Appl Genet 126:143–158

    Article  CAS  PubMed  Google Scholar 

  • Lemaga B, Kakuhenzire R, Kassa B, Ewell PT, Priou S (2005) Integrated control of potato bacterial wilt in eastern Africa: the experience of African highlands initiative. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, St. Paul, pp 145–157

    Google Scholar 

  • Lin LW, Hu X, Zhang W, Rogers WJ, Cai WM (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Kanda Y, Yano K, Kiba A, Hikichi Y, Aino M, Kawaguchi A, Mizoguchi S, Nakaho K, Shiomi H, Takikawa Y, Ohnishi K (2009) Molecular typing of Japanese strains of Ralstonia solanacearum in relation to the ability to induce a hypersensitive reaction in tobacco. J Gen Plant Pathol 75:369–380

    Article  CAS  Google Scholar 

  • Liu F, Wei F, Wang L, Liu H, Zhu X, Liang Y (2010) Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol Mol Plant Pathol 74:330–336

    Article  CAS  Google Scholar 

  • Lopez MM, Biosca EG (2005) Potato bacterial wilt management: new prospects for an old problem. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, Saint Paul, pp 205–224

    Google Scholar 

  • Lwin MY, Ranamukhaarachchi SL (2006) Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. Int J Agric Biol 8(5):657–660

    Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50(1):11–18

    Article  CAS  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. Stud Plant Sci 8:17–39

    Article  CAS  Google Scholar 

  • Maji S, Chakrabartty PK (2014) Biocontrol of bacterial wilt of tomato caused by Ralstonia solanacearum by isolates of plant growth promoting rhizobacteria. AJCS 8(2):208–214

    Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227(1–2):115–126

    Article  CAS  Google Scholar 

  • Mayers PE, Hutton DG (1987) Bacterial wilt a new disease of custard apple: symptoms and etiology. Ann Appl Biol 111:135–141

    Article  Google Scholar 

  • Messiha NA, Van Diepeningen AD, Farag NS (2007a) Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol 118:211–225

    Article  Google Scholar 

  • Messiha NA, van Diepeningen AD, Wenneker M, van Beuningen AR, Janse JD, Coenen TG, Termorshuizen AJ, van Bruggen AH, Blok WJ (2007b) Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol 117(4):403–415

    Article  Google Scholar 

  • Michel VV, WANG JF, Midmore DJ, Hartman GL (1997) Effects of intercropping and soil amendment with urea and calcium oxide on the incidence of bacterial wilt of tomato and survival of soil-borne Pseudomonas solanacearum in Taiwan. Plant Pathol 46(4):600–610

    Google Scholar 

  • Modi HA (2012) Sustainable organic agriculture, integrated pest and disease management system (IPDMS), pp 134–152

    Google Scholar 

  • Motisi N, Montfort F, Dore T, Romillac N, Lucas P (2009) Duration of control of two soilborne pathogens following incorporation of above and below ground residues of Brassica juncea into soil. Plant Pathol 58:470–478

    Article  Google Scholar 

  • Nahar K, Matsumoto I, Taguchi F, Inagaki Y, Yamamoto M, Toyoda K (2014) Ralstonia solanacearum type III secretion system effector Rip36 induces a hypersensitive response in the nonhost wild eggplant Solanum torvum. Mol Plant Pathol 15:297–303

    Article  CAS  PubMed  Google Scholar 

  • Nakaho K, Hibino H, Miyagawa H (2000) Possible mechanisms limiting movement of Ralstonia solanacearum in resistant tomato tissues. J Phytopathol 148:181–190

    Article  Google Scholar 

  • Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M et al (2009) Rrs1 and rps4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J 60:218–226

    Article  CAS  PubMed  Google Scholar 

  • Narusaka M, Kubo Y, Hatakeyama K, Imamura J, Ezura H, Nanasato Y et al (2013) Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens. PLoS One 8:e55954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neto AFL, Silveira MA, Souza RM, Nogueira SR, André CMG (2002) Inheritance of bacterial wilt resistance in tomato plants cropped in naturally infested soils of the state of Tocantins. Crop Breed Appl Biot 2(1):25–32

    Article  Google Scholar 

  • Nguyen MT, Ranamukhaarachchi SL (2010) Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J Plant Pathol 1:395–405

    Google Scholar 

  • Norman DJ, Chen J, Yuen JMF, Mangravita Novo A, Byrne D, Walsh L (2006) Control of bacterial wilt of geranium with phosphorous acid. Plant Dis 90:798–802

    Article  CAS  Google Scholar 

  • OEPP (2004) OEPP/EPPO Bull 34:173–178

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. The Plant Health Instructor, pp 1–25

    Google Scholar 

  • Park K, Paul D, Kim YK, Nam KW, Lee YK, Choi HW, Lee SY (2007) Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol J 23(1):22

    Article  Google Scholar 

  • Park HB, Lee J, Kloepper WB, Ryu CM (2013) Exposure of Arabidopsis to hexadecane, a long chain volatile organic compound, confers induced resistance against both Pectobacterium carotovorum and Pseudomonas syringae. Plant Signal Behav 8:e24619

    Article  PubMed  CAS  Google Scholar 

  • Patro L, Das JJ, Padhi SN (2013) Biological pest control. pp 214–233

    Google Scholar 

  • Peeters N, Guidot A, Vailleau F, Valls M (2013) Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 14:651–662

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Picard K, Ponchet M, Blein JP, Rey P, Tirilly Y, Benhamou N (2000) Oligandrin a proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiol 124:379–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Power RH (1983) Relationship between the soil environment and tomato resistance to bacterial wilt (Pseudomonas solanacearum) 4. Control methods. Surinaamse Landbouw 31:39–47

    Google Scholar 

  • Pradhanang PM, Elphinstone JG, Fox RTV (2000) Identification of crop and weed hosts of Ralstonia solanacearum biovar 2 in the hills of Nepal. Plant Pathol 49(4):403–413

    Article  Google Scholar 

  • Pradhanang PM, Ji P, Momol MT, Olson SM, Mayfield JL, Jones JB (2005) Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Dis 89:989–993

    Article  CAS  Google Scholar 

  • Prell HH (1996) Interaktionen von Pflanzen und phytopathogenen Pilzen. Gustav Fischer, Stuttgart

    Google Scholar 

  • Prior P, Fegan M (2005) Recent developments in the phylogeny and classification of Ralstonia solanacearum. Acta Hortic 695:127–136

    Article  CAS  Google Scholar 

  • Qian YL, Wang XS, Wang DZ, Zhang LN, Zu CL, Gao ZL (2013) The detection of QTLs controlling bacterial wilt resistance in tobacco (N. tabacum L.) Euphytica 192:259–266

    Article  CAS  Google Scholar 

  • Ramesh R, Phadke GS (2012) Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Prot 37:35–41

    Article  Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32(1):273–303

    Article  Google Scholar 

  • Raymond SM, Marissa G, Noel Benjamin C, Erika AF (2014) Characterization of the glucosinolates and isothiocyanates in mustard extracts and determination of its myrosinase activity and antioxidant capacity, DLSU Research Congress

    Google Scholar 

  • Raza W, Ling N, Liu D, Wei Z, Huang Q, Shen Q (2016) Volatile organic compounds produced by Pseudomonas fluorescensWR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol Res 192:103–113

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues FA, Diogo VC, Wydra K (2007) Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol Mol Plant Pathol 70:120–129

    Article  CAS  Google Scholar 

  • Saad AT, Abul Hassam HM (2000) Pathogenesis and control of bacterial speck, Pseudomonas syringae pv. tomato on tomato. EPPO Bull 30:341–345

    Article  Google Scholar 

  • Saddler GS (2005) Management of bacterial wilt disease. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS press, Saint Paul, pp 121–132

    Google Scholar 

  • Sangoyomi TE, Owoseni AA, Adebayo OS, Omilani OA (2011) Evaluation of some botanicals against bacterial wilt of tomatoes. Int res J Microbiol 2(9):365–369

    Google Scholar 

  • Sarkar S, Chaudhuri S (2013) Evaluation of the biocontrol potential of Bacillus subtilis, Pseudomonas aeruginosa and Trichoderma viride against bacterial wilt of tomato. Asian J Biol Life Sci 2(2):146–151

    Google Scholar 

  • Schönfeld J, Heuer H, Van Elsas JD, Smalla K (2003) Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl Environ Microbiol 69(12):7248–7256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Shew HD, Lucas GB (eds) (1991) Compendium of tobacco diseases. APS Press, St. Paul

    Google Scholar 

  • Shiomi T, Mulya K, Oniki M (1989) Bacterial wilt of cashew (Anacardium occidentale) caused by Pseudomonas solanacearum in Indonesia. Ind Crops Res J 2:29–35

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Singh D, Yadav DK, Upadhyay BK (2012) Utilization of plant growth promoting Bacillus subtilis isolates for the management of bacterial wilt incidence in tomato caused by Ralstonia solanacearum race 1 biovar 3. Indian Phytopathol 65(1):18–24

    Google Scholar 

  • Smith EF (1896) A bacterial disease of the tomato, eggplant and Irish potato. US Dept Agric Div Veg Phys Path Bull 12:1–26

    Google Scholar 

  • Sole M, Popa C, Mith O, Sohn KH, Jones JD, Deslandes L (2012) The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Mol Plant-Microbe Interact 25:941–953

    Article  CAS  PubMed  Google Scholar 

  • Srivastava JN, Chand J, Upmadutta CS, Azad CS, Singh AK, Neeraj K, Jha AC (2014) Management strategies for disease and pest in organic farming system. Bioteck Books, New Delhi

    Google Scholar 

  • Stevenson WR, Loria R, Franc GD, Weingartner DP (eds) (2001) Compendium of potato diseases, 2nd edn. APS Press, St. Paul

    Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol 48(3):360–369

    Article  Google Scholar 

  • Sullivan TJ, Rodstrom J, Vandop J, Librizzi J, Graham C, Schardl CL, Bultman TL (2007) Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition expression and leaf composition. New Phytol 176:673–679

    Article  CAS  PubMed  Google Scholar 

  • Sun SK, Huang JW (1985) Formulated soil amendment for controlling Fusarium wilt and other soil borne diseases. Plant Dis 69:917–920

    Article  Google Scholar 

  • Swanson JK, Yao J, Tans-Kersten J, Allen C (2005) Behavior of Ralstonia solanacearum race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95(2):136–143

    Article  PubMed  Google Scholar 

  • Takenaka S, Nishio Z, Nakamura Y (2003) Induction of defense reactions in sugar beet and wheat by treatment with cell wall protein fractions from the mycoparasite Pythium oligandrum. Phytopathology 93:1228–1232

    Article  CAS  PubMed  Google Scholar 

  • Tan HM, Cao LX, He ZF, Su GJ, Lin B, Zhou SN (2006) Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World J Microbiol Biotechnol 22(12):1275–1280

    Article  CAS  Google Scholar 

  • Teng PS, Krupa SV (eds) (1980) Assessment of losses which constrain production and crop improvement in agriculture and forestry. Proceedings of the E. C. Stackman ommemorative symposium. University of Minnesota, St. Paul

    Google Scholar 

  • Thomas P, Sadashiva AT, Upreti R, Mujawar MM (2014) Direct delivery of inoculum to shoot tissue interferes with genotypic resistance to Ralstonia solanacearum in tomato seedlings. J Phytopathol 163:320–323. doi:10.1111/jph.12281

    Article  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71(11):7292–7300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyota K, Kimura M (2000) Suppression of Ralstonia solanacearum in soil following colonization by other strains of R. solanacearum. Soil Sci Plant Nutr 46(2):449–459

    Google Scholar 

  • Van Overbeek LS, Cassidy M, Kozdroj J, Trevors JT, van Elsas JD (2002) A polyphasic approach for studying the interaction between Ralstonia solanacearum and potential control agents in the tomato phytosphere. J Microbiol Methods 48(1):69–86

    Article  PubMed  Google Scholar 

  • Vasse J, Frey P, Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant-Microbe Interact MPMI 8(2):241

    Article  CAS  Google Scholar 

  • Velasco P, Lema M, Francisco M, Cartea PSME (2013) In vivo and in vitro effects of secondary metabolites against Xanthomonas campestris pv. campestris. Molecules 18:11131–11143

    Article  CAS  PubMed  Google Scholar 

  • Villa JE, Tsuchiya K, Horita M, Natural M, Opina N, Hyakumachi M (2005) Phylogenetic relationships of Ralstonia solanacearum species complex strains from Asia and other continents based on 16S rDNA, endoglucanase, and hrpB gene sequences. J Gen Plant Pathol 71(1):39–46

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40(1):1–10

    Article  CAS  Google Scholar 

  • Vleeshouwers VG, Oliver RP (2014) Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Mol Plant-Microbe Interact 27:196–206

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liang G (2014) Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt, Ralstonia solanacearum. Biomed Res Int 12

    Google Scholar 

  • Wang JF, Lin CH (2005) Integrated management of tomato bacterial wilt. AVRDC-The world vegetable center, Shanhua

    Google Scholar 

  • Wang JF, Olivier J, Thoquet P, Mangin B, Sauviac L, Grimsley NH (2000) Resistance of tomato line Hawaii 7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant-Microbe Interact 13:6–13

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cai K, Chen Y, Wang K (2013a) Silicon-mediated tomato resistance against Ralstonia solanacearum is associated with modification of soil microbial community structure and activity. Biol Trace Elem Res 152:275–283

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, Ho FI, Truong HTH, Huang SM, Balatero CH, Dittapongpitch V et al (2013b) Identification of major QTLs asociated with stable resistance of tomato cultivar “Hawaii 7996” to Ralstonia solanacearum. Euphytica 190:241–252

    Article  CAS  Google Scholar 

  • Wei Z, Yang X, Yin S, Shen Q, Ran W, Xu Y (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol 48(2):152–159

    Article  Google Scholar 

  • Wheeler JR (2016) Impacts of Biofumigation and Anaerobic soil disinfestation on strawberry production. Master’s Thesis, University of Tennessee

    Google Scholar 

  • Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M, Prior P (2007) Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Appl Environ Microbiol 73(21):6790–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C (2014) Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:299–303

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Pan ZC, Prior P, Xu JS, Zhang Z, Zhang H, Zhang LQ, He LY, Feng J (2009) Genetic diversity of Ralstonia solanacearum strains from China. Eur J Plant Pathol 125:641

    Article  CAS  Google Scholar 

  • Xue QY, Chen Y, Li SM, Chen LF, Ding GC, Guo DW, Guo JH (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48(3):252–258

    Article  Google Scholar 

  • Xue QY, Yin YN, Yang W, Heuer H, Prior P, Guo JH, Smalla K (2011) Genetic diversity of Ralstonia solanacearum strains from China assessed by PCR-based fingerprints to unravel host plant and site dependent distribution patterns. FEMS Microbiol Ecol 75:507–519

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol 39(11):897–904

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Xu Q, Liu HX, Wang YP, Wang YM, Yang HT, Guo JH (2012) Evaluation of biological control agents against Ralstonia wilt on ginger. Biol Control 62(3):144–151

    Article  Google Scholar 

  • Yao J, Allen C (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188(10):3697–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Bai XF, Du YG (2008) The primary study of oligochitosan inducing resistance to Sclerotinia sclerotiorum on B. Napus. J Biotechnol 136S:600–601

    Article  Google Scholar 

  • Yin H, Zhao X, Bai X, Du Y (2010) Molecular cloning and characterization of a Brassica napus L. map kinase involved in oligochitosan-induced defense signaling. Plant Mol Biol Report 28(2):292–301

    Article  CAS  Google Scholar 

  • Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f sp. cubense. Appl Environ Microbiol 78:5942–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaninotto F, LaCamera S, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol 141:379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D et al (2004) Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol 55:825–834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Indian Council of Agricultural Research – National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM) is gratefully acknowledged for continuous support and funding in institute project entitled “Elucidation of endophytic bacteria-mediated mechanisms in biological control of Ralstonia solanacearum and induced systemic resistance in tomato.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sahu, P.K., Gupta, A., Kedarnath, Kumari, P., Lavanya, G., Yadav, A.K. (2017). Attempts for Biological Control of Ralstonia solanacearum by Using Beneficial Microorganisms. In: Meena, V., Mishra, P., Bisht, J., Pattanayak, A. (eds) Agriculturally Important Microbes for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5343-6_11

Download citation

Publish with us

Policies and ethics