Skip to main content

Effect of Newtonian Cooling/Heating on MHD Free Convective Flow Between Vertical Walls with Induced Magnetic Field

  • Conference paper
  • First Online:
Applications of Fluid Dynamics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1551 Accesses

Abstract

An analysis is performed for the steady MHD free convective flow between two vertical walls assuming that the fluid is viscous, incompressible, and electrically conducting. The impacts of the Newtonian cooling/heating and induced magnetic field have been considered in the mathematical formulation of the problem. The nondimensionalized simultaneous differential equations, governing the problem, have been solved analytically for the temperature, the velocity, and the induced magnetic field. The manifestations have been made for the induced current density, the skin-friction, and the mass flux. The impact of the Hartmann number, the Biot number, and the magnetic Prandtl number on the velocity, the induced magnetic field, and the induced current density diagrams have been presented by considering a temperature-dependent source/sink. It is inspected that the velocity, the induced magnetic field, and the induced current density diagrams have decreasing tendency with rise in the value of the Hartmann number. Further, it is also noticed that with enhancement in the magnetic Prandtl number the velocity diagram decreases, but the induced magnetic field and the induced current density diagrams have increasing nature. It is beheld that the impression of Newtonian cooling/heating is to reduce/raise the velocity as well as the induced magnetic field and the induced current density. The impacts of the governing parameters on the skin-friction and mass flux have also been concluded dealing with their numerical values given in the tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chandran P, Sacheti NC, Singh AK (2001) An unified approach to analytical solution of a hydromagnetic free convection flow. Scientiae Mathematicae Japonicae 53:467–476

    MATH  MathSciNet  Google Scholar 

  • Ghosh SK, Beg OA, Zueco J (2010) Hydromagnetic free convection flow with induced magnetic field effects. Meccanica 14:175–185

    Article  MATH  MathSciNet  Google Scholar 

  • Hartmann J, Lazarus F, Hg-Dynamics II (1937) Experimental investigations on the flow of Mercury in homogenous magnetic field. DetKgl. Danske Videnskabernes Selskab. Mathematisk-fysiske Meddelelser XV: 7

    Google Scholar 

  • Jha BK (1991) MHD free and forced convection flow past an infinite vertical plate with heat source. Astrophys Space Sci 183:169–175

    Article  MATH  Google Scholar 

  • Kumar A, Singh AK (2013) Unsteady MHD free convective flow past a semi-infinite vertical wall with induced magnetic field. Appl Math Comput 222:462–471

    Article  MATH  MathSciNet  Google Scholar 

  • Kumar D, Singh AK (2015) Effect of induced magnetic field on natural convection with Newtonian heating/cooling in vertical concentric annuli. Procedia Eng 127:568–574

    Article  Google Scholar 

  • Kwanza JK, Balakiyema JA (2012) Magnetohydrodynamic free convective flow past an infinite vertical porous plate with magnetic induction. J Fusion Energy 31:352–356

    Article  Google Scholar 

  • Mishra SP, Mohapatra P (1975) Unsteady free convection flow from a vertical plate in the presence of a uniform magnetic field. Zeitschriftfür Angewandte Mathematik und Mechanik 55:759–762

    Article  MATH  Google Scholar 

  • Nath G (1974) Solutions of boundary layer equations governing free convective and magnetohydrodynamic flows through parametric differentiation. Zeitschriftfür Angewandte Mathematik und Mechanik 54:685–693

    Article  MATH  Google Scholar 

  • Osterle JF, Young FJ (1961) Natural convection between heated vertical plates in horizontal magnetic field. J Fluid Mech 11:512–518

    Article  MATH  MathSciNet  Google Scholar 

  • Ostrach S (1952) Laminar natural convection flow and heat transfer of the fluids with and without heat sources in channels with constant wall temperature. NASA Technical Note No. 2863

    Google Scholar 

  • Paul T, Jha BK, Singh AK (1996) Transient free convective flow in a vertical channel with constant heat flux on the walls. Heat Mass Transf 32:61–63

    Article  Google Scholar 

  • Sacheti NC, Chandran P, Singh AK (1994) An exact solution for unsteady magnetohydrodynamic free convection flow with constant heat flux. Int Commun Heat Mass Transf 21:131–142

    Article  Google Scholar 

  • Sarveshanand, Singh AK (2015) Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field. SprigerPlus 4:333

    Article  Google Scholar 

  • Singh AK, Singh JN (1991) Transient hydromagnetic free-convection flow past an impulsively started vertical plat. Astrophys Space Sci 176:523–529

    Article  Google Scholar 

  • Singh RK, Singh AK, Sacheti NC, Chandran P (2010) On hydromagnetic free convection in the presence of induced magnetic field. Heat Mass Transf 46:523–529

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarveshanand .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{array}{*{20}l} {E_{1} = \frac{\sqrt S }{Bi \, \sin \sqrt S + \sqrt S \, \cos \sqrt S },\quad E_{3} = Ha\sqrt {Pm} ,\;\;E_{15} = \frac{1}{{2E_{7} }},} \hfill \\ {E_{2} = \frac{Bi}{Bi \, \sin \sqrt S + \sqrt S \, \cos \sqrt S },\quad E_{4} = \frac{{E_{1} }}{{S + E_{3}^{2} }}, \;\; E_{5} = \frac{{E_{2} }}{{S + E_{3}^{2} }},} \hfill \\ {E_{16} = \frac{{E_{6} }}{2},\quad E_{11} = \frac{{E_{6} }}{{\exp \left( {E_{3} } \right)}},\;\; E_{12} = - \frac{{E_{4} \cos \left( {\sqrt S } \right) + E_{5} \sin \left( {\sqrt S } \right)}}{{\exp \left( {E_{3} } \right)}},} \hfill \\ {E_{13} = - \frac{1}{{E_{7} \exp \left( {E_{3} } \right)}}, \quad E_{17} = - \frac{{E_{4} E_{7} + E_{8} }}{{2E_{7} }},\;\;E_{18} = \frac{{E_{6} }}{2} - \frac{{E_{6} - E_{11} }}{{1 - E_{10} }},} \hfill \\ {E_{14} = \frac{{E_{8} \cos \left( {\sqrt S } \right) + E_{9} \sin \left( {\sqrt S } \right)}}{{E_{7} \exp \left( {E_{3} } \right)}}, \quad E_{19} = \frac{{E_{4} + E_{12} }}{{1 - E_{10} }} - \frac{{E_{4} E_{7} + E_{8} }}{{2E_{7} }},} \hfill \\ {E_{20} = E_{15} + \frac{{E_{13} }}{{1 + E_{10} }},\quad E_{21} = \frac{{E_{6} }}{2} - \frac{{E_{6} }}{{1 + E_{10} }},\;\;E_{22} = \frac{{E_{4} + E_{14} }}{{1 + E_{10} }} - \frac{{E_{4} E_{7} + E_{8} }}{{2E_{7} }},} \hfill \\ {E_{23} = \frac{{E_{19} E_{20} - E_{15} E_{22} }}{{E_{18} E_{20} - E_{15} E_{21} }},\quad E_{24} = \frac{{E_{19} - E_{18} E_{23} }}{{E_{15} }},\;\;E_{25} = E_{17} - E_{15} E_{24} - E_{16} E_{23} ,} \hfill \\ {E_{26} = - E_{4} - E_{25} - E_{6} E_{23} ,\quad E_{27} = E_{6} E_{23} ,\;\;E_{28} = - E_{7} E_{26} ,\;\;E_{29} = E_{7} E_{25} } \hfill \\ {F = - S,\quad F_{3} = Ha\sqrt {Pm} ,\;\;F_{1} = \frac{\sqrt F }{Bi \, \sinh \sqrt F + \sqrt F \, \cosh \sqrt F },} \hfill \\ {F_{2} = \frac{Bi}{Bi \, \sinh \sqrt F + \sqrt F \, \cosh \sqrt F },\quad F_{4} = - \frac{{F_{1} }}{{F - F_{3}^{2} }},\;\;F_{5} = - \frac{{F_{2} }}{{F - F_{3}^{2} }},} \hfill \\ {F_{6} = - \frac{Pm}{{F_{3} }},\quad F_{7} = - \frac{{F_{5} Pm}}{\sqrt F },\;\;F_{8} = - \frac{{F_{4} Pm}}{\sqrt F },\;\;F_{9} = \exp \left( { - 2F_{3} } \right),} \hfill \\ {F_{10} = \frac{1}{{Pm \, \exp \left( {F_{3} } \right)}},\quad F_{14} = - \frac{1}{{2F_{6} }},\;\;F_{11} = - \frac{{F_{4} \cosh \sqrt F + F_{5} \sinh \sqrt F }}{{\exp \left( {F_{3} } \right)}},} \hfill \\ {F_{12} = \frac{1}{{F_{6} \exp \left( {F_{3} } \right)}},\quad F_{17} = \frac{{2F_{12} F_{6} - F_{9} - 1}}{{2F_{6} (1 + F_{9} )}},\;\;F_{18} = \frac{{F_{9} - 1}}{{2Pm(1 + F_{9} )}},} \hfill \\ {F_{13} = - \frac{{F_{7} \cosh \sqrt F + F_{8} \sinh \sqrt F }}{{F_{6} \exp \left( {F_{3} } \right)}},\quad F_{25} = \frac{{F_{21} }}{Pm},\;\;F_{15} = \frac{{2F_{10} Pm - F_{9} - 1}}{{2Pm(1 - F_{9} )}},} \hfill \\ {F_{16} = \frac{{2F_{11} F_{6} + F_{4} F_{6} F_{9} + F_{4} F_{6} + F_{7} - F_{7} F_{9} }}{{2F_{6} (1 - F_{9} )}},\quad F_{24} = - \frac{{F_{21} }}{Pm} - F_{23} - F_{4} ,} \hfill \\ {F_{19} = \frac{{2F_{13} F_{6} + F_{4} F_{6} + F_{7} F_{9} + F_{7} - F_{4} F_{6} F_{9} }}{{2F_{6} (1 + F_{9} )}},\quad F_{21} = \frac{{F_{16} F_{17} - F_{14} F_{19} }}{{F_{15} F_{17} - F_{14} F_{18} }},} \hfill \\ {F_{22} = \frac{{F_{16} - F_{15} F_{21} }}{{F_{14} }},\quad F_{20} = \frac{{F_{7} - F_{4} F_{6} }}{{2F_{6} }},\;\;F_{23} = F_{20} - F_{14} F_{19} - \frac{{F_{21} }}{2Pm},} \hfill \\ {F_{26} = F_{24} F_{6} ,\quad F_{27} = - F_{23} F_{6} .} \hfill \\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarveshanand, Singh, A.K. (2018). Effect of Newtonian Cooling/Heating on MHD Free Convective Flow Between Vertical Walls with Induced Magnetic Field. In: Singh, M., Kushvah, B., Seth, G., Prakash, J. (eds) Applications of Fluid Dynamics . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5329-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5329-0_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5328-3

  • Online ISBN: 978-981-10-5329-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics