Skip to main content

Squeezing of Bingham Fluid Between Two Plane Annuli

  • Conference paper
  • First Online:
Applications of Fluid Dynamics

Abstract

In this study, the presence of Bingham fluid between two parallel plane annuli with constant squeeze motion is theoretically analyzed. The effect of radius of separation on core thickness, pressure distribution, and squeeze force for different values of Bingham number has been investigated. By considering equilibrium of an element of the core in the fluid, thickness of the rigid plug core has been calculated numerically. The properties of the squeeze film are investigated through the non-Newtonian effects on the squeeze force of the plane for various annular spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(h^{*}\) :

Squeeze film thickness

\(H = {{h^{*} } \mathord{\left/ {\vphantom {{h^{*} } {h^{*} = 1}}} \right. \kern-0pt} {h^{*} = 1}}\) :

Dimensionless squeeze film thickness

\(r^{*}\) :

Radial coordinate

\(r = {{r^{*} } \mathord{\left/ {\vphantom {{r^{*} } {r_{2}^{*} }}} \right. \kern-0pt} {r_{2}^{*} }}\) :

Dimensionless radial coordinate

\(z^{*}\) :

Axial coordinate

\(z = z^{*} /h^{*}\) :

Dimensionless axial coordinate

\(r_{1}^{*}\) :

Inner radius

\(r_{2}^{*}\) :

Outer radius

\(v_{\text{r}}^{*}\) :

Radial velocity component

\(v_{\text{z}}^{*}\) :

Axial velocity component

\(p^{*}\) :

Pressure

\(p\) :

Dimensionless pressure

\(\dot{h}^{*} = - v_{\text{s}}\) :

Squeeze velocity

\(r_{0}^{*}\) :

Radius of separation

\(\lambda = r_{0}^{*} /r_{2}^{*}\) :

Dimensionless radius of separation

\(k = r_{1}^{*} /r_{2}^{*}\) :

Ratio of inner and outer radius

\(p_{\text{a}}^{*}\) :

Ambient pressure

\(p_{\text{a}}\) :

Dimensionless ambient pressure

\(\tau_{rz}\) :

Dimensionless shear stress

\(\tau_{0}\) :

Yield stress

\(\mu\) :

Newtonian viscosity

\(B = \frac{{\tau_{0} (h^{*} )^{2} }}{{\mu v_{\text{s}} r_{2}^{*} }}\) :

Bingham number

\(h_{{1_{1} }}^{*} ,h_{{2_{1} }}^{*}\) :

Boundaries of core thickness in \(r_{1}^{*} \le r^{*} \le r_{0}^{*}\)

\(h_{{1_{2} }}^{*} ,h_{{2_{2} }}^{*}\) :

Boundaries of core thickness in \(r_{0}^{*} \le r^{*} \le r_{2}^{*}\)

\(h_{{c_{1} }}^{*}\) :

Core thickness in the region \(r_{1}^{*} \le r^{*} \le r_{0}^{*}\)

\(h_{{c_{2} }}^{*}\) :

Core thickness in the region \(r_{0}^{*} \le r^{*} \le r_{2}^{*}\)

\(H_{1} ,H_{2}\) :

Dimensionless boundaries of the core thickness

\(H_{{1_{1} }} ,H_{{2_{1} }}\) :

Dimensionless boundaries of the core thickness in \(k \le r \le \lambda\)

\(H_{{1_{2} }} ,H_{{2_{2} }}\) :

Dimensionless boundaries of the core thickness in \(\lambda \le r \le 1\)

\(H_{c} = H_{{{c}_{1} }}\) :

Dimensionless core thickness in the region \(k \le r \le \lambda\)

\(H_{c} = H_{{{c}_{2} }}\) :

Dimensionless core thickness in the region \(\lambda \le r \le 1\)

\(w^{*}\) :

Squeeze force

\(w\) :

Dimensionless squeeze force

\(w(k,N)\) :

Dimensionless squeeze force of Newtonian fluid

References

  • Alexandrou N, Duc E, Entov V (2001) Inertial viscous and yield stress effects in Bingham fluid filling of a 2-d cavity. J Non-Newton Fluid Mech 96:383–403

    Article  MATH  Google Scholar 

  • Archibald FR (1956) Load capacity and time relations for squeeze films. Trans ASME 78:29–35

    Google Scholar 

  • Balmforth NJ, Craster RV (1999) A consistent thin-layer theory for Bingham plastics. J Nonnewton Fluid Mech 84:65–81

    Article  MATH  Google Scholar 

  • Elkouh AF, Nigro NJ, Liou YS (1982) Non-newtonian squeeze film between two plane annuli. J Tribol 104:275–278

    Google Scholar 

  • Lin JR (1996) Viscous shear effects on the squeeze-film behavior in porous circular disks. Int J Mech Sci 38:373–384

    Article  MATH  Google Scholar 

  • Lin JR, Hung CR (2008) Combined effects of non-Newtonian rheology and rotational inertia on the squeeze film characteristics of parallel circular discs. Proc Inst Mech Eng J Eng Tribol 222:629–636

    Article  Google Scholar 

  • Shukla JB (1964) Theory for the squeeze film for power law fluid lubricants. ASME 64:1–4

    Google Scholar 

  • Singh P, Radhakrishnan V, Narayan KA (1990) Squeezing flow between parallel plates. Ingenieur-Archiv 60:274–281

    Article  MATH  Google Scholar 

  • Smyrnaios DN, Tsamopoulos JA (2001) Squeeze flow of Bingham plastics. J Non-Newton Fluid Mech 100:165–189

    Article  MATH  Google Scholar 

  • Turns SR (1983) Annular squeeze films with inertial effects. J Tribol 105:361–363

    Google Scholar 

  • Usha R, Vimala P (2003) Squeeze film force using an elliptical velocity profile. J Appl Mech 70:137–142

    Article  MATH  Google Scholar 

  • Vishwanath KP, Kandasamy A (2010) Inertia effects in circular squeeze film bearing using Herschel-Bulkley lubricants. Appl Math Model 34:219–227

    Article  MATH  MathSciNet  Google Scholar 

  • Walicka A (2011) Pressure distribution in a porous curvilinear squeeze film bearing lubricated by a Bingham fluid. Int J Appl Mech Eng 16:1215–1224

    Google Scholar 

  • Wilson SDR (1993) Squeezing flow of a Bingham material. J Nonnewton Fluid Mech 47:211–219

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Singeetham Pavan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavan Kumar, S., Vishwanath, K.P. (2018). Squeezing of Bingham Fluid Between Two Plane Annuli. In: Singh, M., Kushvah, B., Seth, G., Prakash, J. (eds) Applications of Fluid Dynamics . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5329-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5329-0_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5328-3

  • Online ISBN: 978-981-10-5329-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics