Skip to main content

Mathematical Study of Peristalsis in the Presence of Electrokinetic Transport in Parallel Plate Microchannel

  • Conference paper
  • First Online:
Applications of Fluid Dynamics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1585 Accesses

Abstract

Electrokinetic transport of fluids through microchannel by micropumping and microperistaltic pumping has much interest for many engineering, medical, and industrial applications. Motivated in part by the need of mathematical model to study the electrokinetic transport by peristaltic pumping, an analytical approach is presented. A non-integral number of wave propagation is considered for transportation of fluid bolus along the channel length. Debye-Hückel linearization is employed to find out the potential function. A non-dimensional analysis is employed to simplify the governing equations. Low Reynolds number and large wavelength approximations are taken into account. The effects of characteristic electrical double layer (EDL) thickness and maximum electroosmotic velocity on pumping characteristics are discussed by computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbar NS, Raza M, Ellahi R (2015) Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. J Magn Magn Mater 381:405–415

    Article  Google Scholar 

  • Blanchette F (2014) The influence of suspended drops on peristaltic pumping. Phys Fluids (1994-present) 26: 061902

    Google Scholar 

  • Brettschneider T, Dorrer C (2013) Microfluidic peristaltic pump, method and pumping system: Google Patents

    Google Scholar 

  • Burns J, Parkes T (1967) Peristaltic motion. J Fluid Mech 29:731–743

    Article  Google Scholar 

  • Chakraborty S (2006) Augmentation of peristaltic microflows through electro-osmotic mechanisms. J Phys D Appl Phys 39:5356

    Article  Google Scholar 

  • Chou H-P, Fu AY, Quake SR (2015) Microfluidic devices and methods of use: Google Patents

    Google Scholar 

  • Dey R, Chakraborty D, Chakraborty S (2012) Extended Graetz problem for combined electroosmotic and pressure-driven flows in narrow confinements with thick electric double layers. Int J Heat Mass Transf 55:4724–4733

    Article  Google Scholar 

  • Ellahi R, Bhatti MM, Vafai K (2014) Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. Int J Heat Mass Transf 71:706–719

    Article  Google Scholar 

  • Fung Y, Yih C (1968) Peristaltic transport. J Appl Mech 35:669–675

    Article  MATH  Google Scholar 

  • Goodson KE, Chen C-H, Huber DE, Jiang L, Kenny TW, Koo J-M et al (2005) Electroosmotic microchannel cooling system: Google Patents

    Google Scholar 

  • Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5:145–174

    Article  Google Scholar 

  • Jaffrin M, Shapiro A (1971) Peristaltic pumping. Annu Rev Fluid Mech 3:13–37

    Article  Google Scholar 

  • Kothandapani M, Prakash J (2015) Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J Magn Magn Mater 378:152–163

    Article  Google Scholar 

  • Li M, Brasseur JG (1993) Non-steady peristaltic transport in finite-length tubes. J Fluid Mech 248:129–151

    Article  MATH  Google Scholar 

  • Mohammadi M, Madadi H, Casals-Terré J, Sellarès J (2015) Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation. Anal Bioanal Chem 407:4733–4744

    Article  Google Scholar 

  • Pozrikidis C (1987) A study of peristaltic flow. J Fluid Mech 180:515–527

    Article  Google Scholar 

  • Shapiro AH, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 37:799–825

    Article  Google Scholar 

  • Shukla J, Parihar R, Rao B, Gupta S (1980) Effects of peripheral-layer viscosity on peristaltic transport of a bio-fluid. J Fluid Mech 97:225–237

    Article  MATH  MathSciNet  Google Scholar 

  • Si D, Jian Y (2015) Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls. J Phys D Appl Phys 48:085501

    Article  Google Scholar 

  • Takabatake S, Ayukawa K (1982) Numerical study of two-dimensional peristaltic flows. J Fluid Mech 122:439–465

    Article  MATH  Google Scholar 

  • Tripathi D, Bég OA (2013) Transient magneto-peristaltic flow of couple stress biofluids: a magneto-hydro-dynamical study on digestive transport phenomena. Math Biosci 246:72–83

    Article  MATH  MathSciNet  Google Scholar 

  • Tripathi D, Bég OA (2014a) Peristaltic propulsion of generalized Burgers’ fluids through a non-uniform porous medium: A study of chyme dynamics through the diseased intestine. Math Biosci 248:67–77

    Article  MATH  MathSciNet  Google Scholar 

  • Tripathi D, Bég OA (2014b) A study on peristaltic flow of nanofluids: application in drug delivery systems. Int J Heat Mass Transf 70:61–70

    Article  Google Scholar 

  • Xie J, Shih J, Lin Q, Yang B, Tai Y-C (2004) Surface micromachined electrostatically actuated micro peristaltic pump. Lab Chip 4:495–501

    Article  Google Scholar 

  • Zhang X, Chen Z, Huang Y (2015) A valve-less microfluidic peristaltic pumping method. Biomicrofluidics 9:014118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tripathi, D., Bhushan, S., Yadav, A., Sharma, A. (2018). Mathematical Study of Peristalsis in the Presence of Electrokinetic Transport in Parallel Plate Microchannel. In: Singh, M., Kushvah, B., Seth, G., Prakash, J. (eds) Applications of Fluid Dynamics . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5329-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5329-0_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5328-3

  • Online ISBN: 978-981-10-5329-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics