Skip to main content

Entropy Generation Analysis in a Vertical Porous Channel with Navier Slip and Viscous Dissipation

  • Conference paper
  • First Online:
Book cover Applications of Fluid Dynamics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1558 Accesses

Abstract

The intension of this paper is to investigate the effects of Navier slip and buoyancy force on the entropy in a vertical generation porous channel with suction/injection. This problem is solved analytically by perturbation technique. Closed form solutions are obtained for the fluid velocity and the temperature. The leads of slip parameter, injection/suction Reynolds number, Peclet number and Brinkmann number on the fluid velocity, temperature profiles, Bejan number, and rate of entropy generation are showed graphically and quantitatively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ananthaswamy V, Thenmozhi R, Seethalakshmi R (2016) Analytical expressions or combined effect of buoyancy force. Int J Mod Math Sci 14(1):77–99

    Google Scholar 

  • Chauhan DS, Kumar V (2009) Effects of slip conditions on forced convection and entropy generation in a circular channel occupied by a highly porous medium: Darcy extended Brinkman-Forchheimer model. Turk J Eng Environ Sci 33:91–104

    Google Scholar 

  • Chauhan DS, Kumar V (2011a) Heat transfer and entropy generation during compressible fluid flow in a channel partially filled with porous medium. Int J Energy Technol 3:1–10

    Google Scholar 

  • Chauhan D, Rastogi P (2011b) Heat transfer and entropy generation in MHD flow through a porous medium past a stretching sheet. Int J Energy Technol 3:1–13

    Google Scholar 

  • Chen S (2011) Entropy generation of double-diffusive convection in the presence of rotation. Appl Math Comput 217:8575–8597

    Article  MATH  MathSciNet  Google Scholar 

  • Chen S, Du R (2011) Entropy generation of turbulent double-diffusive natural convection in a rectangle cavity. Energy 36:1721–1734

    Article  Google Scholar 

  • Chen S, Tian Z (2010) Entropy generation analysis of thermal micro-Couette flows in slip regime. Int J Therm Sci 49:2211–2221

    Article  Google Scholar 

  • Chinyoka T, Makinde OD, Eegunjobi AS (2013) Entropy analysis of unsteady magnetic flow through a porous pipe with buoyancy effects. J Porous Media 16:823–836

    Article  Google Scholar 

  • Das S, Jana RN (2014) Entropy generation due to MHD flow in a porous channel with Navier slip. Ain Shams Eng J 5:574–584

    Google Scholar 

  • Eegunjobi AS, Makinde OD (2012) Combined effect of buoyancy force and navier slip on entropy generation in a vertical porous channel. Entropy 14:1028–1044

    Article  MATH  Google Scholar 

  • Hooman K, Gurgenci H, Merrikh AA (2007) Heat transfer and entropy generation optimization of forced convection in a porous-saturated duct of rectangular cross-section. Int J Heat Mass Tranf 50:2051–2059

    Article  MATH  Google Scholar 

  • Mahmud S, Fraser RA (2005) Flow, thermal and entropy generation characteristic inside a porous channel with viscous dissipation. Int J Therm Sci 44:21–32

    Article  Google Scholar 

  • Makinde OD (2011) Second law analysis for variable viscosity hydromagnetic boundary layer flow with thermal radiation and Newtonian heating. Entropy 13:1446–1464

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sukumar .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{aligned} K_{2} & = \frac{{K_{1} }}{Re},\quad K_{1} = Gr_{1} - K,\quad Gr_{1} = \frac{Gr}{{\left( {\exp (Pe) - 1} \right)}},\quad Gr_{2} = \frac{{Gr_{1} }}{{Pe\left( {Pe - Re} \right)}}, \\ J & = 1 - \left( {\beta_{2} Re} \right),\quad a_{1} = 1 - \beta_{1} Re,\quad a_{2} = \beta_{1} K_{2} + \beta_{1} PeGr_{2} - Gr_{2} , \\ b_{1} & = \exp (Re)\left( {1 - \left( {\beta_{2} \,Re} \right)} \right), \\ b_{2} & = \beta_{2} K_{2} + \beta_{2} PeGr_{2} \exp (Pe) - Gr_{2} \exp (Pe) - K_{2} , \\ d_{1} & = 2K_{2} PeC_{2} ,\quad d_{2} = - 2K_{2} PeGr_{2} ,\quad d_{3} = - Re^{2} C_{2}^{2} , \\ d_{4} & = - Pe^{2} Gr_{2}^{2} ,\quad d_{5} = 2RePeGr_{2} C_{2} ,\quad d_{6} = - K_{2}^{2} \\ \end{aligned}$$
$$\begin{aligned} E_{1} & = \frac{{d_{1} }}{{Re\left( {Re - Pe} \right)}},\quad E_{2} = \frac{{d_{2} }}{Pe},\quad E_{3} = \frac{{d_{3} }}{{2Re\left( {2Re - Pe} \right)}},\quad E_{4} = \frac{{d_{4} }}{{2Pe^{2} }}, \\ E_{5} & = \frac{{d_{5} }}{{Re\left( {Re + Pe} \right)}},\quad E_{6} = - \frac{{d_{6} }}{Pe},\quad F = E_{1} + E_{3} + E_{4} + E_{5} ,\quad H = 1 - \left( {\beta_{1} Re} \right) \\ I & = - \frac{{GrC_{3} \beta_{1} }}{Re} + \frac{{GrC_{4} }}{{Pe\left( {Pe - Re} \right)}}\left( {Pe\beta_{1} - 1} \right) + \frac{{GrE_{1} \beta_{1} }}{Re} + \frac{{GrE_{3} }}{Re}\left( {\beta_{1} - \frac{1}{{2Re}}} \right) \\&\quad+ \frac{{GrE_{2} }}{{Pe\left( {Pe - Re} \right)}}\left[ \begin{aligned} & \beta_{1} + \frac{2Pe - Re}{{Pe\left( {Pe - Re} \right)}} \\&- \frac{{\beta_{1} \left( {2Pe - Re} \right)}}{Pe - Re} \\ \end{aligned} \right] + \frac{{GrE_{4} }}{{2Pe\left( {2Pe - Re} \right)}}\left( {2Pe\beta_{1} - 1} \right) \\&\quad+ \frac{{GrE_{5} }}{{Pe\left( {Pe + Re} \right)}}\left[ {\beta_{1} \left( {Re + Pe} \right) - 1} \right] - \frac{{GrE_{6} \beta_{1} }}{{Re^{2} }} \\ \\ \end{aligned}$$
$$\begin{aligned} K & = \frac{{GrC_{3} }}{Re}\left( {1 - \beta_{2} Re} \right) + \frac{{GrC_{4} \,{ \exp }(Pe)}}{{Pe\left( {Pe - Re} \right)}}\left( {Pe\beta_{2} - 1} \right) + \frac{{GrE_{1} \,{ \exp }(Re)}}{Re}\left( {\beta_{2} + Re\beta_{2} - 1} \right) \\ & \quad + \frac{{GrE_{3} \, { \exp }\left( {2Re} \right)}}{{2Re^{2} }}\left( {2\beta_{2} Re - 1} \right) + \frac{{GrE_{4}\, { \exp }\left( {2Pe} \right)}}{{2Pe\left( {2Pe - Re} \right)}}\left( {2Pe\beta_{2} - 1} \right) \\ & \quad + \frac{{GrE_{2} \,{ \exp }(Pe)}}{{Pe\left( {Pe - Re} \right)}}\left[ {\beta_{2} + \beta_{2} Pe - 1 + \frac{2Pe - Re}{{Pe\left( {Pe - Re} \right)}} - \frac{{\beta_{2} \left( {2Pe - Re} \right)}}{Pe - Re}} \right] \\ & \quad + \frac{{GrE_{5}\, { \exp }\left( {Re + Pe} \right)}}{{Pe\left( {Pe + Re} \right)}}\left[ {\beta_{2} \left( {Re + Pe} \right) - 1} \right] \\ & \quad + \frac{{GrE_{6} }}{Re}\left( {\frac{1}{2} - \beta_{2} } \right) + \frac{{GrE_{6} }}{{Re^{2} }}\left( {1 - \beta_{2} } \right) \\ \end{aligned}$$
$$\begin{aligned} G & = E_{1} \exp (Re) + E_{2} \exp (Pe) + E_{3} \exp (2Re) \\ & \quad + E_{4} \exp (2Pe) + E_{5} \exp \left( {Re + Pe} \right) + E_{6} \\ C_{1} & = \frac{{a_{1} b_{2} - a_{2} b_{1} }}{{b_{1} - a_{1} }},\quad C_{2} = \frac{{a_{2} - b_{2} }}{{b_{1} - a_{1} }},\quad C_{3} = \frac{{G - F\left( {\exp (Pe)} \right)}}{\exp (Pe) - 1}, \\ C_{4} & = \frac{F - G}{\exp (Pe) - 1},\quad C_{5} = \frac{{HK - JI\left( {\exp (Re)} \right)}}{\exp (Re) - H},\quad C_{6} \frac{I - K}{\exp (Re) - H} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sukumar, M., Varma, S.V.K., Swetha, R., Kiran Kumar, R.V.M.S.S. (2018). Entropy Generation Analysis in a Vertical Porous Channel with Navier Slip and Viscous Dissipation. In: Singh, M., Kushvah, B., Seth, G., Prakash, J. (eds) Applications of Fluid Dynamics . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5329-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5329-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5328-3

  • Online ISBN: 978-981-10-5329-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics