Skip to main content

Control Strategies of Contagion Processes in Time-Varying Networks

  • Chapter
  • First Online:
Temporal Network Epidemiology

Part of the book series: Theoretical Biology ((THBIO))

Abstract

The vast majority of strategies aimed at controlling contagion processes on networks consider a timescale separation between the evolution of the system and the unfolding of the process. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently to the contagion phenomena. Here, we review the most commonly used immunization strategies on networks. In the first part of the chapter, we focus on controlling strategies in the limit of timescale separation. In the second part instead, we introduce results and methods that relax this approximation. In doing so, we summarize the main findings considering both numerical and analytically approaches in real as well as synthetic time-varying networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The value of p and a c are linked by the relation \(p =\int _{ a_{c}}^{1}F(a)da\).

  2. 2.

    In order to guarantee that a fraction f of nodes is immunized the systems need to be observed for more than one time step. We define T as the average time needed for all the probes to have at least one interaction with other nodes. For any observation time T < T the fraction of immunized nodes will be in general pf.

  3. 3.

    As proposed by Lee et al. [86].

References

  1. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  2. Newman, M.E.J.: Networks. An Introduction. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  3. Cohen, R., Havlin, S.: Complex Networks: Structure, Robustness and Function. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  4. Butts, C.T.: Revisting the foundations of network analysis. Science 325, 414–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gonçalves, B., Perra, N.: Social Phenomena: From Data Analysis to Models. Springer, Cham/New York (2015)

    Book  Google Scholar 

  6. Vespignani, A.: Predicting the behavior of techno-social systems. Science 325, 425–428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  8. Wang, Z., Bauch, C.T., Bhattacharyya, S., d’Onofrio, A., Manfredi, P., Perc, M., Perra, N., Salathé, M., Zhao, D.: Statistical physics of vaccination. Phys. Rep. 664, 1–113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kitsak, M., Gallos, L.K., Havlin, S., Makse, H.A.: Identification of infuential spreaders in complex networks. Nat. Phys. 6, 888 (2010)

    Article  Google Scholar 

  10. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 63, 036104 (2002)

    Article  Google Scholar 

  11. Cohen, R., Havlin, S., and ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)

    Google Scholar 

  12. Morris, M.: Telling tails explain the discrepancy in sexual partner reports. Nature 365, 437 (1993)

    Article  Google Scholar 

  13. Morris, M., Goodreau, S., Moody, J.: Sexual networks, concurrency, and STD/HIV, Ch. 7. In: Holmes, K.K. et al. (eds.) Sexually Transmitted Diseases. McGraw-Hill, New York, USA (2007)

    Google Scholar 

  14. Clauset, A., Eagle, N.: Persistence and periodicity in a dynamic proximity network. In: DIMACS Workshop on Computational Methods for Dynamic Interaction Networks, pp. 1–5 (2007)

    Google Scholar 

  15. Vespignani, A.: Modeling dynamical processes in complex socio-technical systems. Nat. Phys. 8, 32–30 (2012)

    Article  MathSciNet  Google Scholar 

  16. Rocha, L.E.C., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7(3), e1001109, 03 (2011)

    Google Scholar 

  17. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., Van den Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166 (2011)

    Article  MathSciNet  Google Scholar 

  18. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Colizza, V., Isella, L., Régis, C., Pinton, J.-F., Khanafer, N., Van den Broeck, W., Vanhems, P.: Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Med. 9(87) (2011)

    Google Scholar 

  19. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.-L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Article  Google Scholar 

  20. Miritello, G., Moro, E., Lara, R.: Dynamical strength of social ties in information spreading. Phys. Rev. E 83, 045102 (2011)

    Article  Google Scholar 

  21. Kivelä, M., Pan, R., Kaski, K., Kertész, J., Saramäki, J., Karsai, M.: Multiscale analysis of spreading in a large communication network. J. Stat. Mech. 2012(3), P03005 (2012)

    Article  Google Scholar 

  22. Fujiwara, N., Kurths, J., Díaz-Guilera, A.: Synchronization in networks of mobile oscillators. Phys. Rev. E 83(2), 025101 (2011)

    Article  Google Scholar 

  23. Parshani, R., Dickison, M., Cohen, R., Stanley, H. E., Havlin, S.: Dynamic networks and directed percolation. EPL (Europhys. Lett.) 90(3), 38004 (2010)

    Google Scholar 

  24. Bajardi, P., Barrat, A., Natale, F., Savini, L., Colizza, V.: Dynamical patterns of cattle trade movements. PLoS One 6(5), e19869, 05 (2011)

    Google Scholar 

  25. Panisson, A., Barrat, A., Cattuto, C., Van den Broeck, W., Ruffo, G., Schifanella, R.: On the dynamics of human proximity for data diffusion in ad-hoc networks. Ad Hoc Netw. 10, 1532–1543 (2011)

    Article  Google Scholar 

  26. Baronchelli, A., Díaz-Guilera, A.: Consensus in networks of mobile communicating agents. Phys. Rev. E 85, 016113 (2012)

    Article  Google Scholar 

  27. Starnini, M., Baronchelli, A., Barrat, A., Pastor-Satorras, R.: Random walks on temporal networks. Phys. Rev. E 85, 056115 (2012)

    Article  Google Scholar 

  28. Pfitzner, R., Scholtes, I., Garas, A., Tessone, C.J., Schweitzer, F.: Betweenness preference: quantifying correlations in the topological dynamics of temporal networks. Phys. Rev. Lett. 110, 19 (2013)

    Article  Google Scholar 

  29. Karsai, M., Perra, N., Vespignani, A.: Time varying networks and the weakness of strong ties. Sci. Rep. 4, 4001 (2014)

    Article  Google Scholar 

  30. Hoffmann, T., Porter, M.A., Lambiotte, R.: Generalized master equations for non-poisson dynamics on networks. Phys. Rev. E 86, 046102 (2012)

    Article  Google Scholar 

  31. Toroczkai, Z., Guclu, H.: Proximity networks and epidemics. Phys. A 378(1), 68–75 (2007)

    Article  Google Scholar 

  32. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Time scales and dynamical processes in activity driven networks. Sci. Rep. 2, 469 (2012)

    Article  Google Scholar 

  33. Ribeiro, B., Perra, N., Baronchelli, A.: Quantifying the effect of temporal resolution on time-varying networks. Sci. Rep. 3, 3006 (2013)

    Article  Google Scholar 

  34. Perra, N., Baronchelli, A., Mocanu, D., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Random walks and search in time varying networks. Phys. Rev. Lett. 109, 238701 (2012)

    Article  Google Scholar 

  35. Liu, S., Baronchelli, A., Perra, N.: Contagion dynamics in time-varying metapopulations networks. Phys. Rev. E 87(032805) (2013)

    Google Scholar 

  36. Starnini, M., Pastor-Satorras, R.: Topological properties of a time-integrated activity-driven network. Phys. Rev. E 87, 062807 (2013)

    Article  Google Scholar 

  37. Takaguchi, T., Sato, N., Yano, K., Masuda, N.: Importance of individual events in temporal networkss. New J. Phys. 14, 093003 (2012)

    Article  Google Scholar 

  38. Takaguchi, T., Masuda, N., Holme, P.: Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics. PLoS One 8(7), e68629 (2013)

    Article  Google Scholar 

  39. Holme, P., Liljeros, F.: Birth and death of links control disease spreading in empirical contact networks. Sci. Rep. 4, 4999 (2014)

    Article  Google Scholar 

  40. Holme, P., Masuda, N.: The basic reproduction number as a predictor for epidemic outbreaks in temporal networks. PLoS One 10(3), e0120567 (2015)

    Article  Google Scholar 

  41. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97 (2012)

    Article  Google Scholar 

  42. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 1–30 (2015)

    Article  Google Scholar 

  43. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, New Jersey (2016)

    Book  MATH  Google Scholar 

  44. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700 (1927)

    Article  MATH  Google Scholar 

  45. Keeling, M.J., Rohani, P.: Modeling Infectious Disease in Humans and Animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  46. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200 (2001)

    Article  Google Scholar 

  47. Wang, Y., Chakrabarti, D., Wang, G., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of 22nd International Symposium on Reliable Distributed Systems, pp. 25–34 (2003)

    Google Scholar 

  48. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105, 218701 (2010)

    Article  Google Scholar 

  49. Durrett, R.: Some features of the spread of epidemics and information on a random graph. Proc. Natl. Acad. Sci. 107, 4491–4498 (2010)

    Article  Google Scholar 

  50. Goltsev, A.V., Dorogovtsev, S.N., Oliveira, J.G., Mendes, J.F.F.: Localization and spreading of diseases in complex networks. Phys. Rev. Lett. 109(12), 128702 (2012)

    Article  Google Scholar 

  51. Boguñá, M., Castellano, C., Pastor-Satorras, R.: Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks. Phys. Rev. Lett. 111(6), 068701 (2013)

    Article  Google Scholar 

  52. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105(21), 218701 (2010)

    Article  Google Scholar 

  53. Lee, H.K., Shim, P.S., Noh, J.D.: Epidemic threshold of the susceptible-infected-susceptible model on complex networks. Phys. Rev. E 87(6), 062812 (2013)

    Article  Google Scholar 

  54. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378 (2000)

    Article  Google Scholar 

  55. Pastor-Satorras, R., Vespignani, A.: Epidemics and Immunization in Scale-Free Networks. In: Bornholdt, S., Schuster, H.G. (eds.) Handbook of Graphs and Networks: From the Genome to the Internet, pp. 111–130. Wiley-VCH Verlag GmbH Co/KGaA, Weinheim (2005)

    Google Scholar 

  56. Perra, N., Fortunato, S.: Spectral centrality measures in complex networks. Phys. Rev. E 78(3), 036107 (2008)

    Article  MathSciNet  Google Scholar 

  57. Hébert-Dufresne, L., Allard, A., Young, J.-G., Dubé, L.J.: Global efficiency of local immunization on complex networks. Sci. Rep. 3, 2171 (2013)

    Article  Google Scholar 

  58. Thedchanamoorthy, G., Piraveenan, M., Uddin, S., Senanayake, U.: Influence of vaccination strategies and topology on the herd immunity of complex networks. Soc. Netw. Anal. Min. 4(1), 213 (2014)

    Article  Google Scholar 

  59. Chen, Y., Paul, G., Havlin, S., Liljeros, F., Eugene Stanley, H.: Finding a better immunization strategy. Phys. Rev. Lett. 101, 058701 (2008)

    Article  Google Scholar 

  60. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 056109+ (2002)

    Google Scholar 

  61. Schneider, C.M., Mihaljev, T., Herrmann, H.J.: Inverse targeting – an effective immunization strategy. EPL (Europhys. Lett.) 98(4), 46002+ (2012)

    Google Scholar 

  62. Feld, S.L.: Why your friends have more friends than you do. Am. J. Sociol. 96(6), 1464–1477 (1991)

    Article  Google Scholar 

  63. Hodas, N.O., Kooti, F., Lerman, K.: Friendship paradox redux: your friends are more interesting than you. In: Proceedings of 7th International Conference on Weblogs and Social Media, Apr (2013)

    Google Scholar 

  64. Lattanzi, S., Singer, Y.: The power of random neighbors in social networks. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15. ACM, New York, pp. 77–86 (2015)

    Google Scholar 

  65. Madar, N., Kalisky, T., Cohen, R., ben Avraham, D., Havlin, S.: Immunization and epidemic dynamics in complex networks. Eur. Phys. J. B 38(2), 269–276 (2004)

    Google Scholar 

  66. Dezső, Z., Barabási, A.: Halting viruses in scale-free networks. Phys. Rev. E 65, 055103 (2002)

    Article  Google Scholar 

  67. Gallos, L.K., Liljeros, F., Argyrakis, P., Bunde, A., Havlin, S.: Improving immunization strategies. Phys. Rev. E 75, 045104(R) (2007)

    Google Scholar 

  68. Tanaka, G., Urabe, C., Aihara, K.: Random and targeted interventions for epidemic control in metapopulation models. Sci. Rep. 4, 5522 EP–07 (2014)

    Google Scholar 

  69. Gong, K., Tang, M., Hui, P.M., Zhang, H.F., Younghae, D., Lai, Y.-C.: An efficient immunization strategy for community networks. PLoS One 8(12), 1–11 (2013)

    Google Scholar 

  70. Salathé, M., Jones, J.H.: Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6(4), e1000736 (2010)

    Article  MathSciNet  Google Scholar 

  71. Eames, K.T.D.: Modelling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol. 73(1), 104–111 (2008)

    Article  MATH  Google Scholar 

  72. Smieszek, T., Fiebig, L., Scholz, R.W.: Models of epidemics: when contact repetition and clustering should be included. Theor. Biol. Med. Model. 6(1), 1 (2009)

    Article  Google Scholar 

  73. Miller, J.C.: Spread of infectious disease through clustered populations. J. R. Soc. Interface 6, 1121–1134 (2009)

    Article  Google Scholar 

  74. Britton, T., Deijfen, M., Lagerås, A.N., Lindholm, M., et al.: Epidemics on random graphs with tunable clustering. J. Appl. Probab. 45(3), 743–756 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Cardillo, A., Reyes-Suárez, C., Naranjo, F., Gómez-Gardeñes, J.: Evolutionary vaccination dilemma in complex networks. Phys. Rev. E 88, 032803 (2013)

    Article  Google Scholar 

  76. Campbell E., Salathé, M.: Complex social contagion makes networks more vulnerable to disease outbreaks. Sci. Rep. 3, 1905 EP–05 (2013)

    Google Scholar 

  77. Prakash, B.A., Tong, H., Valler, N., Faloutsos, M., Faloutsos, C.: Virus propagation on time-varying networks: theory and immunization algorithms. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, pp. 99–114 (2010)

    Google Scholar 

  78. Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5(2), 021005 (2015)

    Google Scholar 

  79. Tomasello, M.V., Perra, N., Tessone, C.J., Karsai, M., Schweitzer, F.: The role of endogenous and exogenous mechanisms in the formation of R&D networks. Sci. Rep. 4, 5679 (2014)

    Google Scholar 

  80. Ubaldi, E., Perra, N., Karsai, M., Vezzani, A., Burioni, R., Vespignani, A.: Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation. Sci. Rep. 6, 35724 (2016)

    Article  Google Scholar 

  81. Ubaldi, E., Vezzani, A., Karsai, M., Perra, N., Burioni, R.: Burstiness and tie activation strategies in time-varying social networks. Sci. Rep. 7, 46225 (2017)

    Article  Google Scholar 

  82. Alessandretti, L., Sun, K., Baronchelli, A., Perra, N.: Random walks on activity-driven networks with attractiveness. Phys. Rev. E 95, 052318 (2017)

    Article  Google Scholar 

  83. Starnini, M., Pastor-Satorras, R.: Topological properties of a time-integrated activity-driven network. Phys. Rev. E 87(6), 062807 (2013)

    Article  Google Scholar 

  84. Liu, S., Perra, N., Karsai, M., Vespignani, A.: Controlling contagion processes in activity driven networks. Phys. Rev. Lett. 112(11), 118702 (2014)

    Article  Google Scholar 

  85. Pentland, A., Eagle, N., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Natl. Acad. Sci. (PNAS) 106(36), 15274–15278 (2009)

    Google Scholar 

  86. Lee, S., Rocha, L.E.C., Liljeros, F., Holme, P.: Exploiting temporal network structures of human interaction to effectively immunize populations. PLoS One 7, e36439 (2012)

    Article  Google Scholar 

  87. Rocha, L., Liljeros, F., Holme, P.: Information dynamics shape the sexual networks of internet-mediated prostitution. Proc. Natl. Acad. Sci. 107(13), 5706–5711 (2010)

    Article  MATH  Google Scholar 

  88. Liljeros, F., Giesecke, J., Holme, P.: The contact network of inpatients in a regional healthcare system. a longitudinal case study. Math. Popul. Stud. 14(4), 269–284 (2007)

    Google Scholar 

  89. Eckmann, J.-P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. U. S. A. 101(40), 14333–14337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  90. Holme, P., Edling, CR., Liljeros, F.: Structure and time evolution of an internet dating community. Soc. Netw. 26(2), 155–174 (2004)

    Article  Google Scholar 

  91. Starnini, M., Machens, A., Cattuto, C., Barrat, A., Pastor-Satorras, R.: Immunization strategies for epidemic processes in time-varying contact networks. J. Theor. Biol. 337, 89–100 (2013)

    Article  MathSciNet  Google Scholar 

  92. Sociopatterns. http://www.sociopatterns.org/.

  93. Tang, J., Mascolo, C., Musolesi, M., Latora, V.: Exploiting temporal complex network metrics in mobile malware containment. In: 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE, pp. 1–9 (2011)

    Google Scholar 

  94. Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C., Aucinas, A.: Emotionsense: a mobile phones based adaptive platform for experimental social psychology research. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing. ACM, pp. 281–290 (2010)

    Google Scholar 

  95. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., Chaintreau, A.: CRAWDAD dataset Cambridge/haggle (v. 2009-05-29). Downloaded from http://crawdad.org/cambridge/haggle/20090529, May 2009

  96. Funk, S., Salathé, M., Jansen, V.A.A.: Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7(50), 1247–1256 (2010)

    Article  Google Scholar 

  97. Wang, Z., Andrews, M.A., Wu, Z.X., Wang, L., Bauch, C.T.: Coupled disease–behavior dynamics on complex networks: a review. Phys. Life Rev. 15, 1–29 (2015)

    Article  Google Scholar 

  98. Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., Schifanella, R., Menczer, F., Flammini, A.: The role of information diffusion in the evolution of social networks. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp. 356–364 (2013)

    Google Scholar 

Download references

Acknowledgements

The results presented in Sect. 8.3.2 are adapted from Ref. [84] and obtained in collaboration with S. Liu and A. Vespignani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márton Karsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Karsai, M., Perra, N. (2017). Control Strategies of Contagion Processes in Time-Varying Networks. In: Masuda, N., Holme, P. (eds) Temporal Network Epidemiology. Theoretical Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5287-3_8

Download citation

Publish with us

Policies and ethics