Skip to main content

Epidemic Threshold in Temporally-Switching Networks

  • Chapter
  • First Online:
Temporal Network Epidemiology

Part of the book series: Theoretical Biology ((THBIO))

Abstract

Infectious diseases have been modelled on networks that summarise physical contacts or close proximity of individuals. These networks are known to be complex in both their structure and how they change over time. We present an overview of recent progress in numerically determining the epidemic threshold in temporally-switching networks, and illustrate that slower switching of snapshots relative to epidemic dynamics lowers the epidemic threshold. Therefore, ignoring the temporally-varying nature of networks may underestimate endemicity. We also identify a predictor for the magnitude of this shift which is based on the commutator norm of snapshot adjacency matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansal, S., Read, J., Pourbohloul, B., Meyers, L.A.: The dynamic nature of contact networks in infectious disease epidemiology. J. Biol. Dyn. 4, 478–489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge, UK (2008)

    Book  MATH  Google Scholar 

  3. Baxter, G.J.: A voter model with time dependent flip rates. J. Stat. Mech. Theor. Exp. 2011, P09005 (2011)

    Google Scholar 

  4. Cai, C.R., Wu, Z.X., Chen, M.Z.Q., Holme, P., Guan, J.Y.: Solving the dynamic correlation problem of the susceptible-infected-susceptible model on networks. Phys. Rev. Lett. 116, 258301 (2016)

    Article  Google Scholar 

  5. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105, 218701 (2010)

    Article  Google Scholar 

  6. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One 5, e11596 (2010)

    Article  Google Scholar 

  7. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10, 1:26 (2008)

    Google Scholar 

  8. Cohen, J.E., Friedland, S., Kato, T., Kelly, F.P.: Eigenvalue inequalities for products of matrix exponentials. Linear Algebra Appl. 45, 55–95 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eames, K.T.D., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. U. S. A. 99, 13330–13335 (2002)

    Article  Google Scholar 

  10. Fernández-Gracia, J., Eguíluz, V.M., San Miguel, M.: Update rules and interevent time distributions: slow ordering versus no ordering in the voter model. Phys. Rev. E 84, 015103 (2011)

    Article  Google Scholar 

  11. Fernández-Gracia, J., Onnela, J.P., Barnett, M.L., Eguíluz, V.M., Christakis, N.A.: Influence of a patient transfer network of US inpatient facilities on the incidence of nosocomial infections. Sci. Rep. 7, 2930 (2017). http://www.nature.com/articles/s41598-017-02245-7

  12. Ferreira, S.C., Castellano, C., Pastor-Satorras, R.: Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results. Phys. Rev. E 86, 041125 (2012)

    Article  Google Scholar 

  13. Gallotti, R., Barthelemy, M.: The multilayer temporal network of public transport in Great Britain. Sci. Data 2, 140056 (2015)

    Article  Google Scholar 

  14. Gemmetto, V., Barrat, A., Cattuto, C.: Mitigation of infectious disease at school: targeted class closure vs school closure. BMC Infect. Dis. 14, 695 (2014)

    Article  Google Scholar 

  15. Gleeson, J.P.: High-accuracy approximation of binary-state dynamics on networks. Phys. Rev. Lett. 107, 068701 (2011)

    Article  Google Scholar 

  16. Goh, K.I., Barabási, A.L.: Burstiness and memory in complex systems. EPL 81, 48002 (2008)

    Article  MathSciNet  Google Scholar 

  17. Hoffmann, T., Porter, M.A., Lambiotte, R.: Generalized master equations for non-poisson dynamics on networks. Phys. Rev. E 86, 046102 (2012)

    Article  Google Scholar 

  18. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015)

    Article  Google Scholar 

  19. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)

    Article  Google Scholar 

  20. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.L., Saramäki, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011)

    Article  Google Scholar 

  21. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005)

    Article  Google Scholar 

  22. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  23. Liberzon, D.: Switching in Systems and Control. Springer Science + Business Media, New York (2003)

    Book  MATH  Google Scholar 

  24. Liu, S., Perra, N., Karsai, M., Vespignani, A.: Controlling contagion processes in activity driven networks. Phys. Rev. Lett. 112, 118702 (2014)

    Article  Google Scholar 

  25. Masuda, N., Holme, P.: Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep. 5, 6 (2013)

    Google Scholar 

  26. Masuda, N., Klemm, K., Eguíluz, V.M.: Temporal networks: slowing down diffusion by long lasting interactions. Phys. Rev. Lett. 111, 188701 (2013)

    Article  Google Scholar 

  27. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, Singapore (2016)

    Book  MATH  Google Scholar 

  28. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95, 215–233 (2007)

    Article  Google Scholar 

  30. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31, 155–163 (2009)

    Article  Google Scholar 

  31. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  32. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Sci. Rep. 2, 469 (2012)

    Article  Google Scholar 

  33. Porter, M.A., Gleeson, J.P.: Dynamical Systems on Networks - A Tutorial. Springer, Berlin/Heidelberg (2016)

    Book  MATH  Google Scholar 

  34. Rocha, L.E.C., Liljeros, F., Holme, P.: Information dynamics shape the sexual networks of internet-mediated prostitution. Proc. Natl. Acad. Sci. USA 107, 5706–5711 (2010)

    Article  MATH  Google Scholar 

  35. Rocha, L.E.C., Masuda, N.: Individual-based approach to epidemic processes on arbitrary dynamic contact networks. Sci. Rep. 6, 31456 (2016)

    Article  Google Scholar 

  36. Speidel, L., Klemm, K., Eguíluz, V.M., Masuda, N.: Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model. New J. Phys. 18, 073013 (2016)

    Article  Google Scholar 

  37. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 6, e23176 (2011)

    Article  Google Scholar 

  38. Takaguchi, T., Masuda, N.: Voter model with non-poissonian interevent intervals. Phys. Rev. E 84, 036115 (2011)

    Article  Google Scholar 

  39. Thompson, C.J.: Inequality with applications in statistical mechanics. J. Math. Phys. 6, 1812–1813 (1965)

    Article  MathSciNet  Google Scholar 

  40. Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Analytical computation of the epidemic threshold on temporal networks. Phys. Rev. X 5, 021005 (2015)

    Google Scholar 

  41. Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.F., Khanafer, N., Régis, C., Kim, B., Comte, B., Voirin, N.: Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS One 8, e73970 (2013)

    Article  Google Scholar 

  42. Vazquez, A., Rácz, B., Lukács, A., Barabási, A.L.: Impact of non-poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

LS acknowledges the support provided through the Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/G03706X/1]. LS and NM acknowledge the support provided through JST, ERATO, Kawarabayashi Large Graph Project. KK acknowledges funding from the Ramón y Cajal program of MINECO. KK and VME acknowledge support from projects SPASIMM (FIS2016-80067-P AEI/FEDER, UE) and NOMAQ (FIS2014-60343-P). NM acknowledges the support provided through JST, CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Speidel, L., Klemm, K., Eguíluz, V.M., Masuda, N. (2017). Epidemic Threshold in Temporally-Switching Networks. In: Masuda, N., Holme, P. (eds) Temporal Network Epidemiology. Theoretical Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5287-3_7

Download citation

Publish with us

Policies and ethics