Skip to main content

Surveillance for Outbreak Detection in Livestock-Trade Networks

  • Chapter
  • First Online:
Temporal Network Epidemiology

Abstract

We analyze an empirical, temporal network of livestock trade and present numerical results of epidemiological dynamics. The considered network is the backbone of the pig trade in Germany, which forms a major route of disease spreading between agricultural premises. The network is comprised of farms that are connected by a link, if animals are traded between them. We propose a concept for epidemic surveillance, which is generally performed on a subset of the system due to limited resources. The goal is to identify agricultural holdings that are more likely to be infected during the early phase of an epidemic outbreak. These farms, which we call sentinels, are excellent candidates to monitor the whole network. To identify potential sentinel nodes, we determine most probable transmission routes by calculating functional clusters. These clusters are formed by nodes that – chosen as seed for an outbreak – have similar invasion paths. We find that it is indeed possible to group the German pig-trade network in such clusters. Furthermore, we select sentinels by choosing nodes out of every cluster. We argue that any epidemic outbreak can be reliably detected at an early stage by monitoring a small number of those sentinels. Considering a susceptible-infected-recovered model, we show that an outbreak can be detected with only 18 sentinels out of almost 100,000 farms with a probability of 65% in approximately 13 days after first infection. This finding can be further improved by including nodes with the largest in-component (highest vulnerability), which increases the detection probability to 86% within 8 days after first occurrence of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Agrarpolitischer Bericht der Bundesregierung (2015). Bundesministerium für Ernährung und Landwirtschaft (BMEL), available as http://www.bmel.de/SharedDocs/Downloads/Broschueren/Agrarbericht2015.html

  2. 2.

    Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten (StMELF). Herkunftssicherungs- und Informationssystem für Tiere, available from: www.hi-tier.de

References

  1. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  2. Funk, S., Gilad, E., Watkins, C., Jansen, V.A.: Proc. Natl. Acad. Sci. 106, 6872 (2009)

    Article  Google Scholar 

  3. Anderson, R.H., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford/New York (1992)

    Google Scholar 

  4. Murray, J.D.: Mathematical Biology: I. An Introduction Interdisciplinary Applied Mathematics. Springer, New York (2002)

    MATH  Google Scholar 

  5. Diekmann, O., Heesterbeek, H., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, Princeton (2013)

    MATH  Google Scholar 

  6. Fritzemeier, J., Teuffert, J., Greiser-Wilke, I., Staubach, C., Schlüter, H., Moennig, V.: Vet. Microbiol. 77, 29 (2000)

    Article  Google Scholar 

  7. Hethcote, H.W.: SIAM Rev. 42, 599 (2000)

    Article  MathSciNet  Google Scholar 

  8. Bajardi, P., Barrat, A., Savini, L., Colizza, V.: J. Roy. Soc. Interface. 9, 2814 (2012)

    Article  Google Scholar 

  9. Koher, A., Lentz, H.H.K., Hövel, P., Sokolov, I.: PLoS One. 11, e0151209 (2016)

    Article  Google Scholar 

  10. Newman, M.E.J.: Phys. Rev. E. 66, 016128 (2002)

    Article  MathSciNet  Google Scholar 

  11. Konschake, M., Lentz, H.H.K., Conraths, F., Hövel, P., Selhorst, T.: PLoS One. 8, e55223 (2013)

    Article  Google Scholar 

  12. Vernon, M.C., Keeling, M.J.: Proc. R. Soc. Lond. B. Biol. Sci. 276, 469 (2009)

    Article  Google Scholar 

  13. Holme, P., Saramäki, J.: Phys. Rep. 519, 97 (2012)

    Article  Google Scholar 

  14. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Int. J. Parallel Emergent Distrib. Syst. 27, 387 (2012)

    Article  Google Scholar 

  15. Holme, P.: EPJ B. 88, 1 (2015)

    Google Scholar 

  16. Bajardi, P., Barrat, A., Natale, F., Savini, L., Colizza, V.: PLoS One. 6, e19869 (2011)

    Article  Google Scholar 

  17. Rocha, L.E., Liljeros, F., Holme, P.: PLoS Comput. Biol. 7, e1001109 (2011)

    Article  Google Scholar 

  18. Valdano, E., Ferreri, L., Poletto, C., Colizza, V.: Phys. Rev. X. 5, 021005 (2015)

    Google Scholar 

  19. Lentz, H.H.K., Koher, A., Hövel, P., Gethmann, J., Sauter-Louis, C., Selhorst, T., Conraths, F.: PLoS One. 11, e0155196 (2016)

    Article  Google Scholar 

  20. Wu, H., Cheng, J., Huang, S., Ke, Y., Lu, Y., Xu, Y.: Proc. VLDB Endowment. 7, 721 (2014)

    Article  Google Scholar 

  21. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Inc., New York (2010)

    Book  MATH  Google Scholar 

  22. Barabasi, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  23. Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., Zhou, T.: Phys. Rep. 650, 1 (2016)

    Article  MathSciNet  Google Scholar 

  24. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Phys. Rev. E. 64, 025101 (2001)

    Article  Google Scholar 

  25. Pastor-Satorras, R., Vespignani, A.: Phys. Rev. Lett. 86, 3200 (2001)

    Article  Google Scholar 

  26. Morone, F., Makse, H.A.: Nature. 524, 65 (2015)

    Article  Google Scholar 

  27. Brockmann, D., Helbing, D.: Science. 342, 1337–1342 (2013)

    Article  Google Scholar 

  28. Iannelli, F., Koher, A., Brockmann, D., Hövel, P., Sokolov, I.M.: Phys. Rev. E. 95, 012313 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Deutscher Akademischer Austauschdienst (DAAD) within the PPP-PROCOPE scheme. FS, AK, and PH acknowledge funding by Deutsche Forschungs- gemeinschaft in the framework of Collaborative Research Center 910. The work is partially funded by the EC-ANIHWA Contract No. ANR-13-ANWA-0007-03 (LIVEepi) to VC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Schirdewahn .

Editor information

Editors and Affiliations

Appendix

Appendix

Fig. 10.15
figure 15

Entropy H(t 0 , t) of the eight largest clusters not mentioned in the main text (for cluster 4 see Fig. 10.14) over time (red dots), minimum entropy (blue empty dots), and their difference (yellow bars)

Fig. 10.16
figure 16

Entropy H(t 0 , t) of the clusters 9–18 except for cluster 15, which is shown in Fig. 10.14, over time (red dots), minimum entropy (blue empty dots), and their difference (yellow bars)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Schirdewahn, F., Colizza, V., Lentz, H.H.K., Koher, A., Belik, V., Hövel, P. (2017). Surveillance for Outbreak Detection in Livestock-Trade Networks. In: Masuda, N., Holme, P. (eds) Temporal Network Epidemiology. Theoretical Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5287-3_10

Download citation

Publish with us

Policies and ethics